Skip to main content

Treatment of Burns: Established and Novel Technologies

  • Chapter
  • First Online:
  • 1743 Accesses

Abstract

Burns are one of the most devastating traumas, affecting more than two million individuals around the globe every year [1, 2]. The last few decades have been marked by several advances in the care of massive burns that have considerably diminished morbidity and improved survival [3]. These improvements are most notable in elderly individuals [4, 5] and children [6]. Burn care has seen advances in four major areas:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. National Burn Repository. Chicago: American Burn Association; 2015.

    Google Scholar 

  2. Brigham PA, McLoughlin E. Burn incidence and medical care use in the United States: estimates, trends, and data sources. J Burn Care Rehabil. 1996;17(2):95–107. Epub 1996/03/01

    CAS  PubMed  Google Scholar 

  3. Pereira C, Murphy K, Herndon D. Outcome measures in burn care. Is mortality dead? Burns. 2004;30(8):761–71.

    Article  PubMed  Google Scholar 

  4. National Burn Repository—2005 report. Chicago: American Burn Association; 2006.

    Google Scholar 

  5. Barrow RE, Herndon DN. Thermal burns, gender, and survival. Lancet. 1988;2(8619):1076–7. Epub 1988/11/05

    Article  CAS  PubMed  Google Scholar 

  6. Jeschke MG, Pinto R, Kraft R, Nathens AB, Finnerty CC, Gamelli RL, et al. Morbidity and survival probability in burn patients in modern burn care. Crit Care Med. 2015;43(4):808–15. Epub 2015/01/07

    Article  PubMed  PubMed Central  Google Scholar 

  7. Janzekovic Z. A new concept in the early excision and immediate grafting of burns. J Trauma. 1970;10(12):1103–8. Epub 1970/12/01

    Article  CAS  PubMed  Google Scholar 

  8. Merrell SW, Saffle JR, Larson CM, Sullivan JJ. The declining incidence of fatal sepsis following thermal injury. J Trauma. 1989;29(10):1362–6. Epub 1989/10/01

    Article  CAS  PubMed  Google Scholar 

  9. Barret JP, Dziewulski P, Wolf SE, Desai MH, Nichols RJ 2nd, Herndon DN. Effect of topical and subcutaneous epinephrine in combination with topical thrombin in blood loss during immediate near-total burn wound excision in pediatric burned patients. Burns. 1999;25(6):509–13. Epub 1999/09/25

    Article  CAS  PubMed  Google Scholar 

  10. Barret JP, Wolf SE, Desai M, Herndon DN. Total burn wound excision of massive pediatric burns in the first 24 hours post burn injury. Ann Burns Fire Disasters. 1999;XIII(1):25–7.

    Google Scholar 

  11. Herndon DN, Barrow RE, Rutan RL, Rutan TC, Desai MH, Abston S. A comparison of conservative versus early excision. Therapies in severely burned patients. Ann Surg. 1989;209(5):547–52; discussion 552–3. Epub 1989/05/01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herndon DN, Barrow RE, Kunkel KR, Broemeling L, Rutan RL. Effects of recombinant human growth hormone on donor-site healing in severely burned children. Ann Surg. 1990;212(4):424–9; discussion 430–1. Epub 1990/10/01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Herndon DN, Hawkins HK, Nguyen TT, Pierre E, Cox R, Barrow RE. Characterization of growth hormone enhanced donor site healing in patients with large cutaneous burns. Ann Surg. 1995;221(6):649–56; discussion 656–9. Epub 1995/06/01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gallagher JJ, Wolf SE, Herndon DN. Burns. In: Townsend Jr CM, editor. Sabiston textbook of surgery. 18th ed. Philadelphia: Saunders Elsevier; 2007.

    Google Scholar 

  15. Dhennin C. [Methods of covering severe burns]. Soins. 2002;(669):45–7. Epub 2002/11/16. Methodes de recouvrement des brulures profondes.

    Google Scholar 

  16. Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg. 2002;55(3):185–93. Epub 2002/06/04

    Article  CAS  PubMed  Google Scholar 

  17. Uhlig C, Rapp M, Hartmann B, Hierlemann H, Planck H, Dittel KK. Suprathel-an innovative, resorbable skin substitute for the treatment of burn victims. Burns. 2007;33(2):221–9. Epub 2006/11/07

    Article  CAS  PubMed  Google Scholar 

  18. Hundeshagen G, Collins VN, Wurzer P, Sherman W, Voigt CD, Cambiaso-Daniel J, et al. A prospective, randomized, controlled trial comparing the outpatient treatment of pediatric and adult partial-thickness burns with Suprathel or Mepilex Ag. J Burn Care Res. 2018;39(2):261–7. Epub 2017/05/31

    PubMed  PubMed Central  Google Scholar 

  19. Schwarze H, Kuntscher M, Uhlig C, Hierlemann H, Prantl L, Noack N, et al. Suprathel, a new skin substitute, in the management of donor sites of split-thickness skin grafts: results of a clinical study. Burns. 2007;33(7):850–4. Epub 2007/05/12

    Article  CAS  PubMed  Google Scholar 

  20. Schwarze H, Kuntscher M, Uhlig C, Hierlemann H, Prantl L, Ottomann C, et al. Suprathel, a new skin substitute, in the management of partial-thickness burn wounds: results of a clinical study. Ann Plast Surg. 2008;60(2):181–5. Epub 2008/01/25

    Article  CAS  PubMed  Google Scholar 

  21. Bishop JF. Pediatric considerations in the use of Biobrane in burn wound management. J Burn Care Rehabil. 1995;16(3 Pt 1):331–3; discussion 3–4. Epub 1995/05/01

    Article  CAS  PubMed  Google Scholar 

  22. Cassidy C, St Peter SD, Lacey S, Beery M, Ward-Smith P, Sharp RJ, et al. Biobrane versus duoderm for the treatment of intermediate thickness burns in children: a prospective, randomized trial. Burns. 2005;31(7):890–3. Epub 2005/07/19

    Article  PubMed  Google Scholar 

  23. Demling RH. Use of Biobrane in management of scalds. J Burn Care Rehabil. 1995;16(3 Pt 1):329–30. Epub 1995/05/01

    Article  CAS  PubMed  Google Scholar 

  24. Lal S, Barrow RE, Wolf SE, Chinkes DL, Hart DW, Heggers JP, et al. Biobrane improves wound healing in burned children without increased risk of infection. Shock. 2000;14(3):314–8; discussion 318–9. Epub 2000/10/12

    Article  CAS  PubMed  Google Scholar 

  25. Lang EM, Eiberg CA, Brandis M, Stark GB. Biobrane in the treatment of burn and scald injuries in children. Ann Plast Surg. 2005;55(5):485–9. Epub 2005/11/01

    Article  CAS  PubMed  Google Scholar 

  26. Ou LF, Lee SY, Chen YC, Yang RS, Tang YW. Use of Biobrane in pediatric scald burns—experience in 106 children. Burns. 1998;24(1):49–53. Epub 1998/05/28

    Article  CAS  PubMed  Google Scholar 

  27. Whitaker IS, Prowse S, Potokar TS. A critical evaluation of the use of Biobrane as a biologic skin substitute: a versatile tool for the plastic and reconstructive surgeon. Ann Plast Surg. 2008;60(3):333–7. Epub 2008/04/30

    Article  CAS  PubMed  Google Scholar 

  28. Greenwood JE, Clausen J, Kavanagh S. Experience with biobrane: uses and caveats for success. Eplasty. 2009;9:e25. Epub 2009/07/28

    PubMed  PubMed Central  Google Scholar 

  29. Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G. Bioengineered skin substitutes for the management of burns: a systematic review. Burns. 2007;33(8):946–57. Epub 2007/09/11

    Article  PubMed  Google Scholar 

  30. Tan H, Wasiak J, Paul E, Cleland H. Effective use of Biobrane as a temporary wound dressing prior to definitive split-skin graft in the treatment of severe burn: a retrospective analysis. Burns. 2015;41(5):969–76. Epub 2015/03/15

    Article  PubMed  Google Scholar 

  31. Philandrianos C, Andrac-Meyer L, Mordon S, Feuerstein JM, Sabatier F, Veran J, et al. Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns. 2012;38(6):820–9. Epub 2012/06/02

    Article  PubMed  Google Scholar 

  32. Woodroof A, Phipps R, Woeller C, Rodeheaver G, Naughton GK, Piney E, et al. Evolution of a biosynthetic temporary skin substitute: a preliminary study. Eplasty. 2015;15:e30. Epub 2015/08/01

    PubMed  PubMed Central  Google Scholar 

  33. Maral T, Borman H, Arslan H, Demirhan B, Akinbingol G, Haberal M. Effectiveness of human amnion preserved long-term in glycerol as a temporary biological dressing. Burns. 1999;25(7):625–35.

    Article  CAS  PubMed  Google Scholar 

  34. Ninman C, Shoemaker P. Human amniotic membranes for burns. Am J Nurs. 1975;75(9):1468–9.

    CAS  PubMed  Google Scholar 

  35. Robson MC, Krizek TJ. The effect of human amniotic membranes on the bacteria population of infected rat burns. Ann Surg. 1973;177(2):144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Robson MC, Krizek TJ, Koss N, Samburg JL. Amniotic membranes as a temporary wound dressing. Surg Gynecol Obstet. 1973;136(6):904–6.

    CAS  PubMed  Google Scholar 

  37. Salisbury RE, Carnes R, McCarthy LR. Comparison of the bacterial clearing effects of different biologic dressings on granulating wounds following thermal injury. Plast Reconstr Surg. 1980;66(4):596–8.

    Article  CAS  PubMed  Google Scholar 

  38. Quinby WC Jr, Hoover HC, Scheflan M, Walters PT, Slavin SA, Bondoc CC. Clinical trials of amniotic membranes in burn wound care. Plast Reconstr Surg. 1982;70(6):711–7.

    Article  PubMed  Google Scholar 

  39. Gajiwala K, Gajiwala AL. Evaluation of lyophilised, gamma-irradiated amnion as a biological dressing. Cell Tissue Bank. 2004;5(2):73–80.

    Article  PubMed  Google Scholar 

  40. Douglas B. Homografts of fetal membranes as a covering for large wounds; especially those from burns; an experimental and clinical study. J Tn State Med Assoc. 1952;45(6):230–5.

    CAS  PubMed  Google Scholar 

  41. Haberal M, Oner Z, Bayraktar U, Bilgin N. The use of silver nitrate-incorporated amniotic membrane as a temporary dressing. Burns Incl Therm Inj. 1987;13(2):159–63.

    Article  CAS  PubMed  Google Scholar 

  42. Ramakrishnan KM, Jayaraman V. Management of partial-thickness burn wounds by amniotic membrane: a cost-effective treatment in developing countries. Burns. 1997;23(Suppl 1):S33–6.

    Article  PubMed  Google Scholar 

  43. Branski LK, Herndon DN, Celis MM, Norbury WB, Masters OE, Jeschke MG. Amnion in the treatment of pediatric partial-thickness facial burns. Burns. 2008;34(3):393–9. Epub 2007/10/09

    Article  PubMed  Google Scholar 

  44. Hennerbichler S, Reichl B, Pleiner D, Gabriel C, Eibl J, Redl H. The influence of various storage conditions on cell viability in amniotic membrane. Cell Tissue Bank. 2007;8(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ravishanker R, Bath AS, Roy R. “Amnion Bank”—the use of long term glycerol preserved amniotic membranes in the management of superficial and superficial partial thickness burns. Burns. 2003;29(4):369–74.

    Article  CAS  PubMed  Google Scholar 

  46. Tyszkiewicz JT, Uhrynowska-Tyszkiewicz IA, Kaminski A, Dziedzic-Goclawska A. Amnion allografts prepared in the Central Tissue Bank in Warsaw. Ann Transplant. 1999;4(3–4):85–90.

    CAS  PubMed  Google Scholar 

  47. Branski LK, Herndon DN, Pereira C, Mlcak RP, Celis MM, Lee JO, et al. Longitudinal assessment of Integra in primary burn management: a randomized pediatric clinical trial. Crit Care Med. 2007;35(11):2615–23. Epub 2007/09/11

    Article  PubMed  Google Scholar 

  48. Lee EW. Zoografting in a burn case. Boston Med Surg. 1880;103:260.

    Google Scholar 

  49. Brennan D. Mediskin™ I. St. Paul: Brennan Medical LLC; 2010.

    Google Scholar 

  50. Bromberg BE, Song IC, Mohn MP. The use of pig skin as a temporary biological dressing. Plast Reconstr Surg. 1965;36:80–90. Epub 1965/07/01

    Article  CAS  PubMed  Google Scholar 

  51. Cohen IK, Diegelmann RF, Lindblad WJ. Wound healing: biochemical & clinical aspects, vol. xxv. Philadelphia: W.B. Saunders Co.; 1992. p. 630.

    Google Scholar 

  52. Fang Z. Application of skin and skin substitutes to burns wounds. In: Leung P, editor. Burns treatment and research. Singapore: World Scientific; 1991. p. 97–106.

    Google Scholar 

  53. Forbes P. Advances in the biology of skin hair growth. Oxford: Pergamon; 1969. p. 419–32.

    Google Scholar 

  54. Zawacki BE. Reversal of capillary stasis and prevention of necrosis in burns. Ann Surg. 1974;180(1):98–102. Epub 1974/07/01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ersek RA, Denton DR. Silver-impregnated porcine xenografts for treatment of meshed autografts. Ann Plast Surg. 1984;13(6):482–7. Epub 1984/12/01

    Article  CAS  PubMed  Google Scholar 

  56. Ersek RA, Navarro JA. Maximizing wound healing with silver-impregnated porcine xenograft. Todays OR Nurse. 1990;12(12):4–9. Epub 1990/12/01

    CAS  PubMed  Google Scholar 

  57. Rakers S, Gebert M, Uppalapati S, Meyer W, Maderson P, Sell AF, et al. ‘Fish matters’: the relevance of fish skin biology to investigative dermatology. Exp Dermatol. 2010;19(4):313–24. Epub 2010/02/18

    Article  PubMed  Google Scholar 

  58. Imai Y. Role of omega-3 PUFA-derived mediators, the protectins, in influenza virus infection. Biochim Biophys Acta. 2015;1851(4):496–502. Epub 2015/01/27

    Article  CAS  PubMed  Google Scholar 

  59. Mil-Homens D, Bernardes N, Fialho AM. The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen Burkholderia cenocepacia. FEMS Microbiol Lett. 2012;328(1):61–9. Epub 2011/12/14

    Article  CAS  PubMed  Google Scholar 

  60. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101. Epub 2014/06/06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Baldursson BT, Kjartansson H, Konradsdottir F, Gudnason P, Sigurjonsson GF, Lund SH. Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: a noninferiority study. Int J Low Extrem Wounds. 2015;14(1):37–43. Epub 2015/03/12

    Article  CAS  PubMed  Google Scholar 

  62. Yang CK, Polanco TO, Lantis JC 2nd. A prospective, postmarket, compassionate clinical evaluation of a novel acellular fish-skin graft which contains Omega-3 fatty acids for the closure of hard-to-heal lower extremity chronic ulcers. Wounds. 2016;28(4):112–8. Epub 2016/04/14

    CAS  PubMed  Google Scholar 

  63. Magnusson S, Baldursson BT, Kjartansson H, Rolfsson O, Sigurjonsson GF. Regenerative and antibacterial properties of acellular fish skin grafts and human amnion/chorion membrane: implications for tissue preservation in combat casualty care. Mil Med. 2017;182(S1):383–8. Epub 2017/03/16

    Article  PubMed  Google Scholar 

  64. Sheridan RL, Choucair RJ. Acellular allogenic dermis does not hinder initial engraftment in burn wound resurfacing and reconstruction. J Burn Care Rehabil. 1997;18(6):496–9. Epub 1997/12/24

    Article  CAS  PubMed  Google Scholar 

  65. Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns. 1995;21(4):243–8. Epub 1995/06/01

    Article  CAS  PubMed  Google Scholar 

  66. Klasen HJ. A review on the nonoperative removal of necrotic tissue from burn wounds. Burns. 2000;26(3):207–22. Epub 2000/03/31

    Article  CAS  PubMed  Google Scholar 

  67. Sheridan RL. Comprehensive treatment of burns. Curr Probl Surg. 2001;38(9):657–756. Epub 2001/09/25

    Article  CAS  PubMed  Google Scholar 

  68. Rosenberg L, Lapid O, Bogdanov-Berezovsky A, Glesinger R, Krieger Y, Silberstein E, et al. Safety and efficacy of a proteolytic enzyme for enzymatic burn debridement: a preliminary report. Burns. 2004;30(8):843–50. Epub 2004/11/24

    Article  PubMed  Google Scholar 

  69. Rosenberg L, Shoham Y, Krieger Y, Rubin G, Sander F, Koller J, et al. Minimally invasive burn care: a review of seven clinical studies of rapid and selective debridement using a bromelain-based debriding enzyme (Nexobrid(R)). Ann Burns Fire Disasters. 2015;28(4):264–74. Epub 2016/10/26

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kantak NA, Mistry R, Halvorson EG. A review of negative-pressure wound therapy in the management of burn wounds. Burns. 2016;42(8):1623–33. Epub 2016/07/06

    Article  PubMed  Google Scholar 

  71. Genecov DG, Schneider AM, Morykwas MJ, Parker D, White WL, Argenta LC. A controlled subatmospheric pressure dressing increases the rate of skin graft donor site reepithelialization. Ann Plast Surg. 1998;40(3):219–25. Epub 1998/04/02

    Article  CAS  PubMed  Google Scholar 

  72. Chong SJ, Liang WH, Tan BK. Use of multiple VAC devices in the management of extensive burns: the total body wrap concept. Burns. 2010;36(7):e127–9. Epub 2010/10/05

    Article  PubMed  Google Scholar 

  73. Low OW, Chong SJ, Tan BK. The enhanced total body wrap—the new frontier in dressing care for burns. Burns. 2013;39(7):1420–2. Epub 2013/06/08

    Article  PubMed  Google Scholar 

  74. Barret JP, Wolf SE, Desai MH, Herndon DN. Cost-efficacy of cultured epidermal autografts in massive pediatric burns. Ann Surg. 2000;231(6):869–76. Epub 2000/05/19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carsin H, Ainaud P, Le Bever H, Rives J, Lakhel A, Stephanazzi J, et al. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns. 2000;26(4):379–87. Epub 2000/04/07

    Article  CAS  PubMed  Google Scholar 

  76. Sood R, Roggy D, Zieger M, Balledux J, Chaudhari S, Koumanis DJ, et al. Cultured epithelial autografts for coverage of large burn wounds in eighty-eight patients: the Indiana University experience. J Burn Care Res. 2010;31(4):559–68. Epub 2010/07/10

    Article  PubMed  Google Scholar 

  77. Wood FM, Kolybaba ML, Allen P. The use of cultured epithelial autograft in the treatment of major burn injuries: a critical review of the literature. Burns. 2006;32(4):395–401. Epub 2006/04/20

    Article  CAS  PubMed  Google Scholar 

  78. Reid MJ, Currie LJ, James SE, Sharpe JR. Effect of artificial dermal substitute, cultured keratinocytes and split thickness skin graft on wound contraction. Wound Repair Regen. 2007;15(6):889–96. Epub 2007/11/22

    Article  PubMed  Google Scholar 

  79. James SE, Booth S, Dheansa B, Mann DJ, Reid MJ, Shevchenko RV, et al. Sprayed cultured autologous keratinocytes used alone or in combination with meshed autografts to accelerate wound closure in difficult-to-heal burns patients. Burns. 2010;36(3):e10–20. Epub 2009/03/24

    Article  PubMed  Google Scholar 

  80. Zweifel CJ, Contaldo C, Kohler C, Jandali A, Kunzi W, Giovanoli P. Initial experiences using non-cultured autologous keratinocyte suspension for burn wound closure. J Plast Reconstr Aesthet Surg. 2008;61(11):e1–4. Epub 2007/09/18

    Article  CAS  PubMed  Google Scholar 

  81. Devauchelle B, Badet L, Lengele B, Morelon E, Testelin S, Michallet M, et al. First human face allograft: early report. Lancet. 2006;368(9531):203–9. Epub 2006/07/18

    Article  PubMed  Google Scholar 

  82. Brazio PS, Barth RN, Bojovic B, Dorafshar AH, Garcia JP, Brown EN, et al. Algorithm for total face and multiorgan procurement from a brain-dead donor. Am J Transplant. 2013;13(10):2743–9. Epub 2013/08/07

    Article  CAS  PubMed  Google Scholar 

  83. Mohan R, Borsuk DE, Dorafshar AH, Wang HD, Bojovic B, Christy MR, et al. Aesthetic and functional facial transplantation: a classification system and treatment algorithm. Plast Reconstr Surg. 2014;133(2):386–97. Epub 2014/01/29

    Article  CAS  PubMed  Google Scholar 

  84. Lantieri L, Grimbert P, Ortonne N, Suberbielle C, Bories D, Gil-Vernet S, et al. Face transplant: long-term follow-up and results of a prospective open study. Lancet. 2016;388(10052):1398–407. Epub 2016/08/29

    Article  PubMed  Google Scholar 

  85. Sosin M, Ceradini DJ, Levine JP, Hazen A, Staffenberg DA, Saadeh PB, et al. Total face, eyelids, ears, scalp, and skeletal subunit transplant: a reconstructive solution for the full face and Total scalp burn. Plast Reconstr Surg. 2016;138(1):205–19. Epub 2016/06/28

    Article  CAS  PubMed  Google Scholar 

  86. Aycart MA, Kiwanuka H, Krezdorn N, Alhefzi M, Bueno EM, Pomahac B, et al. Quality of life after face transplantation: outcomes, assessment tools, and future directions. Plast Reconstr Surg. 2017;139(1):194–203. Epub 2016/12/28

    Article  CAS  PubMed  Google Scholar 

  87. Giatsidis G, Sinha I, Pomahac B. Reflections on a decade of face transplantation. Ann Surg. 2017;265(4):841–6. Epub 2016/12/30

    Article  PubMed  Google Scholar 

  88. Nguyen LL, Naunheim MR, Hevelone ND, Diaz-Siso JR, Hogan JP, Bueno EM, et al. Cost analysis of conventional face reconstruction versus face transplantation for large tissue defects. Plast Reconstr Surg. 2015;135(1):260–7. Epub 2014/12/30

    Article  CAS  PubMed  Google Scholar 

  89. Pomahac B, Pribaz J, Eriksson E, Bueno EM, Diaz-Siso JR, Rybicki FJ, et al. Three patients with full facial transplantation. N Engl J Med. 2012;366(8):715–22. Epub 2011/12/30

    Article  CAS  PubMed  Google Scholar 

  90. Pushpakumar SB, Barker JH, Soni CV, Joseph H, van Aalst VC, Banis JC, et al. Clinical considerations in face transplantation. Burns. 2010;36(7):951–8. Epub 2010/04/24

    Article  PubMed  Google Scholar 

  91. Boyce ST, Glatter R, Kitzmiller WJ. Treatment of chronic wounds with cultured cells and biopolymers: a pilot study. Wounds. 1995;7:24–9.

    Google Scholar 

  92. Boyce ST. Skin substitutes from cultured cells and collagen-GAG polymers. Med Biol Eng Comput. 1998;36(6):791–800. Epub 1999/06/15

    Article  CAS  PubMed  Google Scholar 

  93. Hansbrough JF, Boyce ST, Cooper ML, Foreman TJ. Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen-glycosaminoglycan substrate. JAMA. 1989;262(15):2125–30. Epub 1989/10/20

    Article  CAS  PubMed  Google Scholar 

  94. Boyce ST, Williams ML. Lipid supplemented medium induces lamellar bodies and precursors of barrier lipids in cultured analogues of human skin. J Invest Dermatol. 1993;101(2):180–4. Epub 1993/08/01

    Article  CAS  PubMed  Google Scholar 

  95. Prunieras M, Regnier M, Woodley DT. Methods for cultivation of keratinocytes at the air-liquid interface. J Invest Dermatol. 1983;81:28S–33S.

    Article  CAS  PubMed  Google Scholar 

  96. Boyce ST, Supp AP, Swope VB. Vitamin C regulates keratinocyte viability, epidermal barrier, and basement membrane formation in vitro, and reduces wound contraction after grafting of cultured skin substitutes. J Invest Dermatol. 2002;118:565–72.

    Article  CAS  PubMed  Google Scholar 

  97. Swope VB, Supp AP, Cornelius JR. Regulation of pigmentation in cultured skin substitutes by cytometric sorting of melanocytes and keratinocytes. J Invest Dermatol. 1997;109:289–95.

    Article  CAS  PubMed  Google Scholar 

  98. Supp DM, Boyce ST. Overexpression of vascular endothelial growth factor accelerates early vascularization and improves healing of genetically modified cultured skin substitutes. J Burn Care Rehabil. 2002;23:10–20.

    Article  PubMed  Google Scholar 

  99. Supp DM, Supp AP, Bell SM. Enhanced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor. J Invest Dermatol. 2000;114:5–13.

    Article  CAS  PubMed  Google Scholar 

  100. Dantzer E, Braye FM. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg. 2001;54(8):659–64. Epub 2001/12/01

    Article  CAS  PubMed  Google Scholar 

  101. Nguyen DQ, Potokar TS, Price P. An objective long-term evaluation of Integra (a dermal skin substitute) and split thickness skin grafts, in acute burns and reconstructive surgery. Burns. 2010;36(1):23–8. Epub 2009/10/30

    Article  PubMed  Google Scholar 

  102. Bargues L, Boyer S, Leclerc T, Duhamel P, Bey E. [Incidence and microbiology of infectious complications with the use of artificial skin Integra in burns]. Ann Chir Plast Esthet. 2009;54(6):533–9. Epub 2009/02/19. Incidence et microbiologie des complications infectieuses lors d’utilisation de la peau artificielle Integra chez le brule.

    Google Scholar 

  103. Leffler M, Horch RE, Dragu A, Bach AD. The use of the artificial dermis (Integra) in combination with vacuum assisted closure for reconstruction of an extensive burn scar—a case report. J Plast Reconstr Aesthet Surg. 2010;63(1):e32–5. Epub 2009/06/16

    Article  CAS  PubMed  Google Scholar 

  104. Moiemen NS, Yarrow J, Kamel D, Kearns D, Mendonca D. Topical negative pressure therapy: does it accelerate neovascularisation within the dermal regeneration template, Integra? A prospective histological in vivo study. Burns. 2010;36(6):764–8. Epub 2010/05/25

    Article  PubMed  Google Scholar 

  105. Shahrokhi S, Arno A, Jeschke MG. The use of dermal substitutes in burn surgery: acute phase. Wound Repair Regen. 2014;22(1):14–22. Epub 2014/01/08

    Article  PubMed  Google Scholar 

  106. Nessler M, Puchala J, Wood FM, Wallace HJ, Fear MW, Nessler K, et al. Changes in the plasma cytokine and growth factor profile are associated with impaired healing in pediatric patients treated with INTEGRA(R) for reconstructive procedures. Burns. 2013;39(4):667–73. Epub 2012/10/04

    Article  PubMed  Google Scholar 

  107. Danin A, Georgesco G, Touze AL, Penaud A, Quignon R, Zakine G. Assessment of burned hands reconstructed with Integra((R)) by ultrasonography and elastometry. Burns. 2012;38(7):998–1004. Epub 2012/06/15

    Article  PubMed  Google Scholar 

  108. Heimbach DM, Warden GD, Luterman A, Jordan MH, Ozobia N, Ryan CM, et al. Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. J Burn Care Rehabil. 2003;24(1):42–8. Epub 2003/01/25

    Article  PubMed  Google Scholar 

  109. Eming SA, Lee J, Snow RG, Tompkins RG, Yarmush ML, Morgan JR. Genetically modified human epidermis overexpressing PDGF-A directs the development of a cellular and vascular connective tissue stroma when transplanted to athymic mice—implications for the use of genetically modified keratinocytes to modulate dermal regeneration. J Invest Dermatol. 1995;105(6):756–63. Epub 1995/12/01

    Article  CAS  PubMed  Google Scholar 

  110. Eming SA, Medalie DA, Tompkins RG, Yarmush ML, Morgan JR. Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft. Hum Gene Ther. 1998;9(4):529–39. Epub 1998/04/03

    Article  CAS  PubMed  Google Scholar 

  111. Eming SA, Snow RG, Yarmush ML, Morgan JR. Targeted expression of insulin-like growth factor to human keratinocytes: modification of the autocrine control of keratinocyte proliferation. J Invest Dermatol. 1996;107(1):113–20. Epub 1996/07/01

    Article  CAS  PubMed  Google Scholar 

  112. Eming SA, Whitsitt JS, He L, Krieg T, Morgan JR, Davidson JM. Particle-mediated gene transfer of PDGF isoforms promotes wound repair. J Invest Dermatol. 1999;112(3):297–302. Epub 1999/03/20

    Article  CAS  PubMed  Google Scholar 

  113. Eriksson E. Gene transfer in wound healing. Adv Skin Wound Care. 2000;13(2 Suppl):20–2. Epub 2000/11/15

    CAS  PubMed  Google Scholar 

  114. Eriksson E, Yao F, Svensjo T, Winkler T, Slama J, Macklin MD, et al. In vivo gene transfer to skin and wound by microseeding. J Surg Res. 1998;78(2):85–91. Epub 1998/09/12

    Article  CAS  PubMed  Google Scholar 

  115. Butler KL, Goverman J, Ma H, Fischman A, Yu YM, Bilodeau M, et al. Stem cells and burns: review and therapeutic implications. J Burn Care Res. 2010;31(6):874–81. Epub 2010/09/23

    Article  PubMed  Google Scholar 

  116. Burd A, Ahmed K, Lam S, Ayyappan T, Huang L. Stem cell strategies in burns care. Burns. 2007;33(3):282–91. Epub 2007/03/03

    Article  CAS  PubMed  Google Scholar 

  117. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648–59. Epub 2007/07/07

    Article  CAS  PubMed  Google Scholar 

  118. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001;166(12):7556–62. Epub 2001/06/08

    Article  CAS  PubMed  Google Scholar 

  119. Korbling M, Estrov Z, Champlin R. Adult stem cells and tissue repair. Bone Marrow Transplant. 2003;32(Suppl 1):S23–4. Epub 2003/08/22

    Article  PubMed  CAS  Google Scholar 

  120. Mansilla E, Marin GH, Drago H, Sturla F, Salas E, Gardiner C, et al. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplant Proc. 2006;38(3):967–9. Epub 2006/05/02

    Article  CAS  PubMed  Google Scholar 

  121. Weil BR, Markel TA, Herrmann JL, Abarbanell AM, Kelly ML, Meldrum DR. Stem cells in sepsis. Ann Surg. 2009;250(1):19–27. Epub 2009/06/30

    Article  PubMed  Google Scholar 

  122. Guenou H, Nissan X, Larcher F, Feteira J, Lemaitre G, Saidani M, et al. Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet. 2009;374(9703):1745–53. Epub 2009/11/26

    Article  CAS  PubMed  Google Scholar 

  123. Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346(6212):941–5. Epub 2014/11/22

    Article  CAS  PubMed  Google Scholar 

  124. Charruyer A, Ghadially R. Stem cells and tissue-engineered skin. Skin Pharmacol Physiol. 2009;22(2):55–62. Epub 2009/02/04

    Article  CAS  PubMed  Google Scholar 

  125. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104(2):233–45. Epub 2001/02/24

    Article  CAS  PubMed  Google Scholar 

  126. Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther. 2010;21(9):1045–56. Epub 2010/06/23

    Article  CAS  PubMed  Google Scholar 

  127. Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG. Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev. 2010;19(4):491–502. Epub 2009/07/29

    Article  CAS  PubMed  Google Scholar 

  128. Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC. Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol. 2007;75(2):91–6. Epub 2007/05/12

    Article  CAS  PubMed  Google Scholar 

  129. Bey E, Prat M, Duhamel P, Benderitter M, Brachet M, Trompier F, et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound Repair Regen. 2010;18(1):50–8. Epub 2010/01/20

    Article  PubMed  Google Scholar 

  130. Lee KD. Applications of mesenchymal stem cells: an updated review. Chang Gung Med J. 2008;31(3):228–36. Epub 2008/09/12

    PubMed  Google Scholar 

  131. Mansilla E, Drago H, Marin GH, Sturla F, Ibar R, Soratti C. Mesenchymal stem cells, could they be the link between tolerance and regeneration? Burns. 2007;33(2):137–8. Epub 2007/02/07

    Article  PubMed  Google Scholar 

  132. Mansilla E, Aquino VD, Roque G, Tau JM, Maceira A. Time and regeneration in burns treatment: heading into the first worldwide clinical trial with cadaveric mesenchymal stem cells. Burns. 2012;38(3):450–2. Epub 2011/11/02

    Article  PubMed  Google Scholar 

  133. Mansilla E, Marin GH, Berges M, Scafatti S, Rivas J, Nunez A, et al. Cadaveric bone marrow mesenchymal stem cells: first experience treating a patient with large severe burns. Burns Trauma. 2015;3:17. Epub 2015/01/01

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hernandez A, Evers BM. Functional genomics: clinical effect and the evolving role of the surgeon. Arch Surg. 1999;134(11):1209–15. Epub 1999/11/11

    Article  CAS  PubMed  Google Scholar 

  135. Khavari PA, Rollman O, Vahlquist A. Cutaneous gene transfer for skin and systemic diseases. J Intern Med. 2002;252(1):1–10. Epub 2002/06/21

    Article  CAS  PubMed  Google Scholar 

  136. Badillo AT, Chung S, Zhang L, Zoltick P, Liechty KW. Lentiviral gene transfer of SDF-1alpha to wounds improves diabetic wound healing. J Surg Res. 2007;143(1):35–42. Epub 2007/10/24

    Article  CAS  PubMed  Google Scholar 

  137. Bett AJ, Prevec L, Graham FL. Packaging capacity and stability of human adenovirus type 5 vectors. J Virol. 1993;67(10):5911–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Carretero M, Del Rio M, Garcia M, Escamez MJ, Mirones I, Rivas L, et al. A cutaneous gene therapy approach to treat infection through keratinocyte-targeted overexpression of antimicrobial peptides. FASEB J. 2004;18(15):1931–3. Epub 2004/10/01

    Article  CAS  PubMed  Google Scholar 

  139. Chen S, Kapturczak M, Loiler SA, Zolotukhin S, Glushakova OY, Madsen KM, et al. Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors. Hum Gene Ther. 2005;16(2):235–47.

    Article  CAS  PubMed  Google Scholar 

  140. Deodato B, Arsic N, Zentilin L, Galeano M, Santoro D, Torre V, et al. Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther. 2002;9(12):777–85.

    Article  CAS  PubMed  Google Scholar 

  141. Galeano M, Deodato B, Altavilla D, Squadrito G, Seminara P, Marini H, et al. Effect of recombinant adeno-associated virus vector-mediated vascular endothelial growth factor gene transfer on wound healing after burn injury. Crit Care Med. 2003;31(4):1017–25.

    Article  CAS  PubMed  Google Scholar 

  142. Kozarsky KF, Wilson JM. Gene therapy: adenovirus vectors. Curr Opin Genet Dev. 1993;3(3):499–503.

    Article  CAS  PubMed  Google Scholar 

  143. Liechty KW, Nesbit M, Herlyn M, Radu A, Adzick NS, Crombleholme TM. Adenoviral-mediated overexpression of platelet-derived growth factor-B corrects ischemic impaired wound healing. J Invest Dermatol. 1999;113(3):375–83.

    Article  CAS  PubMed  Google Scholar 

  144. Lu B, Federoff HJ, Wang Y, Goldsmith LA, Scott G. Topical application of viral vectors for epidermal gene transfer. J Invest Dermatol. 1997;108(5):803–8.

    Article  CAS  PubMed  Google Scholar 

  145. Morgan JR, Barrandon Y, Green H, Mulligan RC. Expression of an exogenous growth hormone gene by transplantable human epidermal cells. Science. 1987;237(4821):1476–9.

    Article  CAS  PubMed  Google Scholar 

  146. Silman NJ, Fooks AR. Biophysical targeting of adenovirus vectors for gene therapy. Curr Opin Mol Ther. 2000;2(5):524–31.

    CAS  PubMed  Google Scholar 

  147. Hengge UR, Chan EF, Foster RA, Walker PS, Vogel JC. Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nat Genet. 1995;10(2):161–6. Epub 1995/06/01

    Article  CAS  PubMed  Google Scholar 

  148. Vogel JC. Nonviral skin gene therapy. Hum Gene Ther. 2000;11(16):2253–9. Epub 2000/11/21

    Article  CAS  PubMed  Google Scholar 

  149. Dileo J, Miller TE Jr, Chesnoy S, Huang L. Gene transfer to subdermal tissues via a new gene gun design. Hum Gene Ther. 2003;14(1):79–87. Epub 2003/02/08

    Article  CAS  PubMed  Google Scholar 

  150. Nanney LB, Paulsen S, Davidson MK, Cardwell NL, Whitsitt JS, Davidson JM. Boosting epidermal growth factor receptor expression by gene gun transfection stimulates epidermal growth in vivo. Wound Repair Regen. 2000;8(2):117–27. Epub 2000/05/16

    Article  CAS  PubMed  Google Scholar 

  151. Yang NS, Sun WH. Gene gun and other non-viral approaches for cancer gene therapy. Nat Med. 1995;1(5):481–3. Epub 1995/05/01

    Article  CAS  PubMed  Google Scholar 

  152. Baker LL, Chambers R, DeMuth SK, Villar F. Effects of electrical stimulation on wound healing in patients with diabetic ulcers. Diabetes Care. 1997;20(3):405–12.

    Article  CAS  PubMed  Google Scholar 

  153. Gardner SE, Frantz RA, Schmidt FL. Effect of electrical stimulation on chronic wound healing: a meta-analysis. Wound Repair Regen. 1999;7(6):495–503.

    Article  CAS  PubMed  Google Scholar 

  154. Lee PY, Chesnoy S, Huang L. Electroporatic delivery of TGF-beta1 gene works synergistically with electric therapy to enhance diabetic wound healing in db/db mice. J Invest Dermatol. 2004;123(4):791–8. Epub 2004/09/18

    Article  CAS  PubMed  Google Scholar 

  155. Marti G, Ferguson M, Wang J, Byrnes C, Dieb R, Qaiser R, et al. Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model. Gene Ther. 2004;11(24):1780–5. Epub 2004/10/08

    Article  CAS  PubMed  Google Scholar 

  156. Felgner PL, Ringold GM. Cationic liposome-mediated transfection. Nature. 1989;337(6205):387–8.

    Article  CAS  PubMed  Google Scholar 

  157. Jeschke MG, Barrow RE, Hawkins HK, Tao Z, Perez-Polo JR, Herndon DN. Biodistribution and feasibility of non-viral IGF-I gene transfers in thermally injured skin. Lab Invest. 2000;80(2):151–8.

    Article  CAS  PubMed  Google Scholar 

  158. Alexander MY, Akhurst RJ. Liposome-medicated gene transfer and expression via the skin. Hum Mol Genet. 1995;4(12):2279–85. Epub 1995/12/01

    Article  CAS  PubMed  Google Scholar 

  159. Slama J, Davidson JM, Eriksson E. Gene therapy of wounds. In: Falanga V, editor. Cutaneous wound healing. London: Taylor & Francis; 2001. p. 123–40.

    Google Scholar 

  160. Jeschke MG, Barrow RE, Hawkins HK, Yang K, Hayes RL, Lichtenbelt BJ, et al. IGF-I gene transfer in thermally injured rats. Gene Ther. 1999;6(6):1015–20.

    Article  CAS  PubMed  Google Scholar 

  161. Sun L, Xu L, Chang H, Henry FA, Miller RM, Harmon JM, et al. Transfection with aFGF cDNA improves wound healing. J Invest Dermatol. 1997;108(3):313–8.

    Article  CAS  PubMed  Google Scholar 

  162. Jeschke MG, Klein D. Liposomal gene transfer of multiple genes is more effective than gene transfer of a single gene. Gene Ther. 2004;11(10):847–55. Epub 2004/02/13

    Article  CAS  PubMed  Google Scholar 

  163. Branski LK, Masters OE, Herndon DN, Mittermayr R, Redl H, Traber DL, et al. Pre-clinical evaluation of liposomal gene transfer to improve dermal and epidermal regeneration. Gene Ther. 2010;17(6):770–8. Epub 2010/04/09

    Article  CAS  PubMed  Google Scholar 

  164. Lynch SE, Nixon JC, Colvin RB, Antoniades HN. Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci U S A. 1987;84(21):7696–700. Epub 1987/11/01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sprugel KH, McPherson JM, Clowes AW, Ross R. Effects of growth factors in vivo. I. Cell ingrowth into porous subcutaneous chambers. Am J Pathol. 1987;129(3):601–13. Epub 1987/12/01

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther. 2000;7(23):2023–7. Epub 2001/02/15

    Article  CAS  PubMed  Google Scholar 

  167. Fu H, Hu Y, McNelis T, Hollinger JO. A calcium phosphate-based gene delivery system. J Biomed Mater Res A. 2005;74(1):40–8.

    Article  PubMed  CAS  Google Scholar 

  168. Shea LD, Smiley E, Bonadio J, Mooney DJ. DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol. 1999;17(6):551–4. Epub 1999/06/29

    Article  CAS  PubMed  Google Scholar 

  169. Voigt M, Schauer M, Schaefer DJ, Andree C, Horch R, Stark GB. Cultured epidermal keratinocytes on a microspherical transport system are feasible to reconstitute the epidermis in full-thickness wounds. Tissue Eng. 1999;5(6):563–72. Epub 1999/12/28

    Article  CAS  PubMed  Google Scholar 

  170. Chandler LA, Gu DL, Ma C, Gonzalez AM, Doukas J, Nguyen T, et al. Matrix-enabled gene transfer for cutaneous wound repair. Wound Repair Regen. 2000;8(6):473–9. Epub 2001/02/24

    Article  CAS  PubMed  Google Scholar 

  171. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992;89(12):5547–51. Epub 1992/06/15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Breuing K, Eriksson E, Liu P, Miller DR. Healing of partial thickness porcine skin wounds in a liquid environment. J Surg Res. 1992;52(1):50–8. Epub 1992/01/01

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwik K. Branski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cambiaso-Daniel, J., Boukovalas, S., Boson, A.L., Branski, L.K., Kamolz, LP. (2020). Treatment of Burns: Established and Novel Technologies. In: Jeschke, M., Kamolz, LP., Sjöberg, F., Wolf, S. (eds) Handbook of Burns Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-18940-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18940-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18939-6

  • Online ISBN: 978-3-030-18940-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics