Skip to main content

Wound Healing

  • Chapter
  • First Online:
Handbook of Burns Volume 1
  • 1774 Accesses

Abstract

Burn wounds are caused by mechanical, thermal, chemical, electrical, and radiation forces—each with their own unique patterns. Wound healing—the body’s response to this injury—can be broken down into the phases: hemostasis, inflammation, proliferation, and remodeling. Many factors can inhibit wound healing, and researchers are investigating the ways to interact with the healing process to facilitate healing while preventing inappropriate scar formation such as keloids and hypertrophic scars. A variety of products exist as dressings for partial and full thickness burn wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sipos P, Gyory H, Hagymasi K, Ondrejka P, Blazovics A. Special wound healing methods used in ancient Egypt and the mythological background. World J Surg. 2004;28(2):211–6. https://doi.org/10.1007/s00268-003-7073-x.

    Article  PubMed  Google Scholar 

  2. Forrest RD. Early history of wound treatment. J R Soc Med. 1982;75(3):198–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Markatos K, Tzivra A, Tsoutsos S, Tsourouflis G, Karamanou M, Androutsos G. Ambroise Pare (1510-1590) and his innovative work on the treatment of war injuries. Surg Innov. 2018;25(2):183–6. https://doi.org/10.1177/1553350617744901.

    Article  PubMed  Google Scholar 

  4. Naylor IL, Curtis B, Kirkpatrick JJ. Treatment of burns scarsand contractures in the early seventeenth century: Wilhelm Fabry’s approach. Med Hist. 1996;40:472–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hattery E, Nguyen T, Baker A, Palmieri T. Burn care in the 1800s. J Burn Care Res. 2015;36(1):236–9. https://doi.org/10.1097/BCR.0000000000000112.

    Article  PubMed  Google Scholar 

  6. Lederberg J. Infectious history. Science. 2000;288(5464):287–93.

    Article  CAS  PubMed  Google Scholar 

  7. Jackson DM. [The diagnosis of the depth of burning]. Br J Surg. 1953;40(164):588–96.

    Article  CAS  PubMed  Google Scholar 

  8. Jackson DM. Second thoughts on the burn wound. J Trauma. 1969;9(10):839–62.

    Article  CAS  PubMed  Google Scholar 

  9. Lee RC. Injury by electrical forces: pathophysiology, manifestations, and therapy. Curr Probl Surg. 1997;34(9):677–764.

    Article  CAS  PubMed  Google Scholar 

  10. Tormoehlen LM, Tekulve KJ, Nanagas KA. Hydrocarbon toxicity: a review. Clin Toxicol (Phila). 2014;52(5):479–89. https://doi.org/10.3109/15563650.2014.923904.

    Article  CAS  Google Scholar 

  11. Waselenko JK, MacVittie TJ, Blakely WF, Pesik N, Wiley AL, Dickerson WE, et al. Medical management of the acute radiation syndrome: recommendations of the strategic National Stockpile Radiation Working Group. Ann Intern Med. 2004;140(12):1037–51.

    Article  PubMed  Google Scholar 

  12. Macfarlane RG. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature. 1964;202:498–9.

    Article  CAS  PubMed  Google Scholar 

  13. Foster K, Greenhalgh D, Gamelli RL, Mozingo D, Gibran N, Neumeister M, et al. Efficacy and safety of a fibrin sealant for adherence of autologous skin grafts to burn wounds: results of a phase 3 clinical study. J Burn Care Res. 2008;29(2):293–303. https://doi.org/10.1097/BCR.0b013e31816673f8.

    Article  PubMed  Google Scholar 

  14. Von Willebrand EA. Hereditary pseudohaemophilia. Haemophilia. 1999;5(3):223–31; discussion 2

    Article  Google Scholar 

  15. Ramasastry SS. Acute wounds. Clin Plast Surg. 2005;32(2):195–208. https://doi.org/10.1016/j.cps.2004.12.001.

    Article  PubMed  Google Scholar 

  16. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341(10):738–46. https://doi.org/10.1056/NEJM199909023411006.

    Article  CAS  PubMed  Google Scholar 

  17. Natelson EA, Lynch EC, Alfrey CP Jr, Gross JB. Heparin-induced thrombocytopenia. An unexpected response to treatment of consumption coagulopathy. Ann Intern Med. 1969;71(6):1121–5.

    Article  CAS  PubMed  Google Scholar 

  18. Calvete JJ. On the structure and function of platelet integrin alpha IIb beta 3, the fibrinogen receptor. Proc Soc Exp Biol Med. 1995;208(4):346–60.

    Article  CAS  PubMed  Google Scholar 

  19. Ley K. Leukocyte adhesion to vascular endothelium. J Reconstr Microsurg. 1992;8(6):495–503. https://doi.org/10.1055/s-2007-1006736.

    Article  CAS  PubMed  Google Scholar 

  20. Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest. 2000;80(5):617–53.

    Article  CAS  PubMed  Google Scholar 

  21. Andre-Levigne D, Modarressi A, Pepper MS, Pittet-Cuenod B. Reactive oxygen species and NOX enzymes are emerging as key players in cutaneous wound repair. Int J Mol Sci. 2017;18(10). https://doi.org/10.3390/ijms18102149.

    Article  PubMed Central  CAS  Google Scholar 

  22. Gawronska-Kozak B, Bogacki M, Rim JS, Monroe WT, Manuel JA. Scarless skin repair in immunodeficient mice. Wound Repair Regen. 2006;14(3):265–76. https://doi.org/10.1111/j.1743-6109.2006.00121.x.

    Article  PubMed  Google Scholar 

  23. Leibovich SJ, Ross R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol. 1975;78(1):71–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Murphy MA, Joyce WP, Condron C, Bouchier-Hayes D. A reduction in serum cytokine levels parallels healing of venous ulcers in patients undergoing compression therapy. Eur J Vasc Endovasc Surg. 2002;23(4):349–52. https://doi.org/10.1053/ejvs.2002.1597.

    Article  CAS  PubMed  Google Scholar 

  25. Helme RD, Eglezos A, Hosking CS. Substance P induces chemotaxis of neutrophils in normal and capsaicin-treated rats. Immunol Cell Biol. 1987;65(Pt 3):267–9. https://doi.org/10.1038/icb.1987.30.

    Article  CAS  PubMed  Google Scholar 

  26. Kavelaars A, Jeurissen F, Heijnen CJ. Substance P receptors and signal transduction in leukocytes. Immunomethods. 1994;5(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  27. Ziche M, Morbidelli L, Masini E, Amerini S, Granger HJ, Maggi CA, et al. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest. 1994;94(5):2036–44. https://doi.org/10.1172/JCI117557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ziche M, Morbidelli L, Pacini M, Geppetti P, Alessandri G, Maggi CA. Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvasc Res. 1990;40(2):264–78.

    Article  CAS  PubMed  Google Scholar 

  29. Paus R, Heinzelmann T, Robicsek S, Czarnetzki BM, Maurer M. Substance P stimulates murine epidermal keratinocyte proliferation and dermal mast cell degranulation in situ. Arch Dermatol Res. 1995;287(5):500–2.

    Article  CAS  PubMed  Google Scholar 

  30. Scott JR, Muangman PR, Tamura RN, Zhu KQ, Liang Z, Anthony J, et al. Substance P levels and neutral endopeptidase activity in acute burn wounds and hypertrophic scar. Plast Reconstr Surg. 2005;115(4):1095–102.

    Article  CAS  PubMed  Google Scholar 

  31. Scott JR, Muangman P, Gibran NS. Making sense of hypertrophic scar: a role for nerves. Wound Repair Regen. 2007;15(Suppl 1):S27–31. https://doi.org/10.1111/j.1524-475X.2007.00222.x.

    Article  PubMed  Google Scholar 

  32. Luster AD, Cardiff RD, MacLean JA, Crowe K, Granstein RD. Delayed wound healing and disorganized neovascularization in transgenic mice expressing the IP-10 chemokine. Proc Assoc Am Physicians. 1998;110(3):183–96.

    CAS  PubMed  Google Scholar 

  33. Akershoek JJ, Brouwer KM, Vlig M, Boekema B, Beelen RHJ, Middelkoop E, et al. Differential effects of losartan and atorvastatin in partial and full thickness burn wounds. PLoS One. 2017;12(6):e0179350. https://doi.org/10.1371/journal.pone.0179350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akershoek JJJ, Brouwer KM, Vlig M, Boekema B, Beelen RHJ, Middelkoop E, et al. Early intervention by captopril does not improve wound healing of partial thickness burn wounds in a rat model. Burns. 2018;44(2):429–35. https://doi.org/10.1016/j.burns.2017.08.008.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol. 1994;124(4):401–4.

    Article  CAS  PubMed  Google Scholar 

  36. Liechty KW, Adzick NS, Crombleholme TM. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine. 2000;12(6):671–6. https://doi.org/10.1006/cyto.1999.0598.

    Article  CAS  PubMed  Google Scholar 

  37. Spyrou GE, Naylor IL. The effect of basic fibroblast growth factor on scarring. Br J Plast Surg. 2002;55(4):275–82.

    Article  CAS  PubMed  Google Scholar 

  38. Rennekampff HO, Hansbrough JF, Kiessig V, Dore C, Sticherling M, Schroder JM. Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res. 2000;93(1):41–54. https://doi.org/10.1006/jsre.2000.5892.

    Article  CAS  PubMed  Google Scholar 

  39. Smith PD, Kuhn MA, Franz MG, Wachtel TL, Wright TE, Robson MC. Initiating the inflammatory phase of incisional healing prior to tissue injury. J Surg Res. 2000;92(1):11–7. https://doi.org/10.1006/jsre.2000.5851.

    Article  CAS  PubMed  Google Scholar 

  40. Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group. J Vasc Surg. 1995;21(1):71–8; discussion 9–81

    Article  CAS  PubMed  Google Scholar 

  41. Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Gramates P, Deuel TF. Transforming growth factor beta reverses the glucocorticoid-induced wound-healing deficit in rats: possible regulation in macrophages by platelet-derived growth factor. Proc Natl Acad Sci U S A. 1989;86(7):2229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tredget EE, Wang R, Shen Q, Scott PG, Ghahary A. Transforming growth factor-beta mRNA and protein in hypertrophic scar tissues and fibroblasts: antagonism by IFN-alpha and IFN-gamma in vitro and in vivo. J Interferon Cytokine Res. 2000;20(2):143–51. https://doi.org/10.1089/107999000312540.

    Article  CAS  PubMed  Google Scholar 

  43. Gabriel VA. Transforming growth factor-beta and angiotensin in fibrosis and burn injuries. J Burn Care Res. 2009;30(3):471–81. https://doi.org/10.1097/BCR.0b013e3181a28ddb.

    Article  PubMed  Google Scholar 

  44. Mills RE, Taylor KR, Podshivalova K, McKay DB, Jameson JM. Defects in skin gamma delta T cell function contribute to delayed wound repair in rapamycin-treated mice. J Immunol. 2008;181(6):3974–83.

    Article  CAS  PubMed  Google Scholar 

  45. http://www.fiercebiotech.com/biotech/juvista-eu-phase-3-trial-results.

  46. Nissen NN, Polverini PJ, Koch AE, Volin MV, Gamelli RL, DiPietro LA. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol. 1998;152(6):1445–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nagy JA, Dvorak AM, Dvorak HF. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol. 2007;2:251–75. https://doi.org/10.1146/annurev.pathol.2.010506.134925.

    Article  CAS  PubMed  Google Scholar 

  48. Hopf HW, Gibson JJ, Angeles AP, Constant JS, Feng JJ, Rollins MD, et al. Hyperoxia and angiogenesis. Wound Repair Regen. 2005;13(6):558–64. https://doi.org/10.1111/j.1524-475X.2005.00078.x.

    Article  PubMed  Google Scholar 

  49. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359(6398):843–5. https://doi.org/10.1038/359843a0.

    Article  CAS  PubMed  Google Scholar 

  50. Packer L, Fuehr K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature. 1977;267(5610):423–5.

    Article  CAS  PubMed  Google Scholar 

  51. Wong VW, Akaishi S, Longaker MT, Gurtner GC. Pushing back: wound mechanotransduction in repair and regeneration. J Invest Dermatol. 2011;131(11):2186–96. https://doi.org/10.1038/jid.2011.212.

    Article  CAS  PubMed  Google Scholar 

  52. Wong VW, Longaker MT, Gurtner GC. Soft tissue mechanotransduction in wound healing and fibrosis. Semin Cell Dev Biol. 2012;23(9):981–6. https://doi.org/10.1016/j.semcdb.2012.09.010.

    Article  CAS  PubMed  Google Scholar 

  53. Ennis WJ, Meneses P, Borhani M. Push-pull theory: using mechanotransduction to achieve tissue perfusion and wound healing in complex cases. Gynecol Oncol. 2008;111(2 Suppl):S81–6. https://doi.org/10.1016/j.ygyno.2008.07.054.

    Article  PubMed  Google Scholar 

  54. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29. https://doi.org/10.1177/0022034509359125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Park JE, Barbul A. Understanding the role of immune regulation in wound healing. Am J Surg. 2004;187(5A):11S–6S. https://doi.org/10.1016/S0002-9610(03)00296-4.

    Article  CAS  PubMed  Google Scholar 

  56. Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, Boismenu R, et al. A role for skin gammadelta T cells in wound repair. Science. 2002;296(5568):747–9. https://doi.org/10.1126/science.1069639.

    Article  CAS  PubMed  Google Scholar 

  57. Santoro MM, Gaudino G. Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res. 2005;304(1):274–86. https://doi.org/10.1016/j.yexcr.2004.10.033.

    Article  CAS  PubMed  Google Scholar 

  58. Martin P. Wound healing—aiming for perfect skin regeneration. Science. 1997;276(5309):75–81.

    Article  CAS  PubMed  Google Scholar 

  59. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104(2):233–45.

    Article  CAS  PubMed  Google Scholar 

  60. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102(4):451–61.

    Article  CAS  PubMed  Google Scholar 

  61. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21. https://doi.org/10.1038/nature07039.

    Article  CAS  PubMed  Google Scholar 

  62. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11(12):1351–4. https://doi.org/10.1038/nm1328.

    Article  CAS  PubMed  Google Scholar 

  63. Levy V, Lindon C, Harfe BD, Morgan BA. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell. 2005;9(6):855–61. https://doi.org/10.1016/j.devcel.2005.11.003.

    Article  CAS  PubMed  Google Scholar 

  64. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature. 2007;447(7142):316–20. https://doi.org/10.1038/nature05766.

    Article  CAS  PubMed  Google Scholar 

  65. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59–88. https://doi.org/10.1146/annurev.cellbio.14.1.59.

    Article  CAS  PubMed  Google Scholar 

  66. Toy LW. Matrix metalloproteinases: their function in tissue repair. J Wound Care. 2005;14(1):20–2. https://doi.org/10.12968/jowc.2005.14.1.26720.

    Article  CAS  PubMed  Google Scholar 

  67. Meschiari CA, Jung M, Iyer RP, Yabluchanskiy A, Toba H, Garrett MR, et al. Macrophage overexpression of matrix metalloproteinase-9 in aged mice improves diastolic physiology and cardiac wound healing following myocardial infarction. Am J Physiol Heart Circ Physiol. 2018;314(2):H224–35. https://doi.org/10.1152/ajpheart.00453.2017.

    Article  CAS  PubMed  Google Scholar 

  68. Lawrence WT. Physiology of the acute wound. Clin Plast Surg. 1998;25(3):321–40.

    CAS  PubMed  Google Scholar 

  69. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, et al. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells. 2004;22(5):812–22. https://doi.org/10.1634/stemcells.22-5-812.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brittan M, Braun KM, Reynolds LE, Conti FJ, Reynolds AR, Poulsom R, et al. Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion. J Pathol. 2005;205(1):1–13. https://doi.org/10.1002/path.1682.

    Article  PubMed  Google Scholar 

  71. Deng W, Han Q, Liao L, Li C, Ge W, Zhao Z, et al. Engrafted bone marrow-derived flk-(1+) mesenchymal stem cells regenerate skin tissue. Tissue Eng. 2005;11(1–2):110–9. https://doi.org/10.1089/ten.2005.11.110.

    Article  CAS  PubMed  Google Scholar 

  72. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648–59. https://doi.org/10.1634/stemcells.2007-0226.

    Article  CAS  PubMed  Google Scholar 

  73. Chen P, Hung WW. Geriatric orthopedic co-management of older adults with hip fracture: an emerging standard. Ann Transl Med. 2015;3(16):224. https://doi.org/10.3978/j.issn.2305-5839.2015.07.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kwon DS, Gao X, Liu YB, Dulchavsky DS, Danyluk AL, Bansal M, et al. Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. Int Wound J. 2008;5(3):453–63. https://doi.org/10.1111/j.1742-481X.2007.00408.x.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Suh W, Kim KL, Kim JM, Shin IS, Lee YS, Lee JY, et al. Transplantation of endothelial progenitor cells accelerates dermal wound healing with increased recruitment of monocytes/macrophages and neovascularization. Stem Cells. 2005;23(10):1571–8. https://doi.org/10.1634/stemcells.2004-0340.

    Article  PubMed  Google Scholar 

  76. Barcelos LS, Duplaa C, Krankel N, Graiani G, Invernici G, Katare R, et al. Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res. 2009;104(9):1095–102. https://doi.org/10.1161/CIRCRESAHA.108.192138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1(1):71–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang L, Scott PG, Dodd C, Medina A, Jiao H, Shankowsky HA, et al. Identification of fibrocytes in postburn hypertrophic scar. Wound Repair Regen. 2005;13(4):398–404. https://doi.org/10.1111/j.1067-1927.2005.130407.x.

    Article  PubMed  Google Scholar 

  79. Wang J, Dodd C, Shankowsky HA, Scott PG, Tredget EE, Wound Healing Research Group. Deep dermal fibroblasts contribute to hypertrophic scarring. Lab Invest. 2008;88(12):1278–90. https://doi.org/10.1038/labinvest.2008.101.

    Article  CAS  PubMed  Google Scholar 

  80. Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res. 2005;304(1):81–90. https://doi.org/10.1016/j.yexcr.2004.11.011.

    Article  CAS  PubMed  Google Scholar 

  81. Yagmur C, Akaishi S, Ogawa R, Guneren E. Mechanical receptor-related mechanisms in scar management: a review and hypothesis. Plast Reconstr Surg. 2010;126(2):426–34. https://doi.org/10.1097/PRS.0b013e3181df715d.

    Article  CAS  PubMed  Google Scholar 

  82. Souba WW, Fink MP, Jurkovic GJ. ACS surgery: principles and practice. BC Decker, Inc.; 2007.

    Google Scholar 

  83. Rinker B. The evils of nicotine: an evidence-based guide to smoking and plastic surgery. Ann Plast Surg. 2013;70(5):599–605. https://doi.org/10.1097/SAP.0b013e3182764fcd.

    Article  CAS  PubMed  Google Scholar 

  84. Robson MC. Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am. 1997;77(3):637–50.

    Article  CAS  PubMed  Google Scholar 

  85. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol. 2007;25(1):19–25. https://doi.org/10.1016/j.clindermatol.2006.12.005.

    Article  PubMed  Google Scholar 

  86. Gibbs J, Cull W, Henderson W, Daley J, Hur K, Khuri SF. Preoperative serum albumin level as a predictor of operative mortality and morbidity: results from the National VA Surgical Risk Study. Arch Surg. 1999;134(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  87. Jeschke MG, Herndon DN, Ebener C, Barrow RE, Jauch KW. Nutritional intervention high in vitamins, protein, amino acids, and omega3 fatty acids improves protein metabolism during the hypermetabolic state after thermal injury. Arch Surg. 2001;136(11):1301–6.

    Article  CAS  PubMed  Google Scholar 

  88. Desneves KJ, Todorovic BE, Cassar A, Crowe TC. Treatment with supplementary arginine, vitamin C and zinc in patients with pressure ulcers: a randomised controlled trial. Clin Nutr. 2005;24(6):979–87. https://doi.org/10.1016/j.clnu.2005.06.011.

    Article  CAS  PubMed  Google Scholar 

  89. Williams JZ, Abumrad N, Barbul A. Effect of a specialized amino acid mixture on human collagen deposition. Ann Surg. 2002;236(3):369–74.; ; discussion 74–5. https://doi.org/10.1097/01.SLA.0000027527.01984.00.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mandell SP, Gibran NS. Early enteral nutrition for burn injury. Adv Wound Care (New Rochelle). 2014;3(1):64–70. https://doi.org/10.1089/wound.2012.0382.

    Article  Google Scholar 

  91. Nordlund MJ, Pham TN, Gibran NS. Micronutrients after burn injury: a review. J Burn Care Res. 2014;35(2):121–33. https://doi.org/10.1097/BCR.0b013e318290110b.

    Article  PubMed  Google Scholar 

  92. Williams FN, Herndon DN, Kulp GA, Jeschke MG. Propranolol decreases cardiac work in a dose-dependent manner in severely burned children. Surgery. 2011;149(2):231–9. https://doi.org/10.1016/j.surg.2010.05.015.

    Article  PubMed  Google Scholar 

  93. Demling RH, Orgill DP. The anticatabolic and wound healing effects of the testosterone analog oxandrolone after severe burn injury. J Crit Care. 2000;15(1):12–7. https://doi.org/10.1053/jcrc.2000.0150012.

    Article  CAS  PubMed  Google Scholar 

  94. Pham TN, Klein MB, Gibran NS, Arnoldo BD, Gamelli RL, Silver GM, et al. Impact of oxandrolone treatment on acute outcomes after severe burn injury. J Burn Care Res. 2008;29(6):902–6. https://doi.org/10.1097/BCR.0b013e31818ba14d.

    Article  PubMed  Google Scholar 

  95. Ali A, Herndon DN, Mamachen A, Hasan S, Andersen CR, Grogans RJ, et al. Propranolol attenuates hemorrhage and accelerates wound healing in severely burned adults. Crit Care. 2015;19:217. https://doi.org/10.1186/s13054-015-0913-x.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wicke C, Halliday B, Allen D, Roche NS, Scheuenstuhl H, Spencer MM, et al. Effects of steroids and retinoids on wound healing. Arch Surg. 2000;135(11):1265–70.

    Article  CAS  PubMed  Google Scholar 

  97. Nathens AB, Neff MJ, Jurkovich GJ, Klotz P, Farver K, Ruzinski JT, et al. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg. 2002;236(6):814–22.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fernandez-Madrid F, Prasad AS, Oberleas D. Effect of zinc deficiency on nucleic acids, collagen, and noncollagenous protein of the connective tissue. J Lab Clin Med. 1973;82(6):951–61.

    CAS  PubMed  Google Scholar 

  99. Andrews M, Gallagher-Allred C. The role of zinc in wound healing. Adv Wound Care. 1999;12(3):137–8.

    CAS  PubMed  Google Scholar 

  100. Macon WL, Pories WJ. The effect of iron deficiency anemia on wound healing. Surgery. 1971;69(5):792–6.

    CAS  PubMed  Google Scholar 

  101. Sengupta A, Lichti UF, Carlson BA, Ryscavage AO, Gladyshev VN, Yuspa SH, et al. Selenoproteins are essential for proper keratinocyte function and skin development. PLoS One. 2010;5(8):e12249. https://doi.org/10.1371/journal.pone.0012249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ogawa R, Akaishi S. Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis—keloids and hypertrophic scars may be vascular disorders. Med Hypotheses. 2016;96:51–60. https://doi.org/10.1016/j.mehy.2016.09.024.

    Article  CAS  PubMed  Google Scholar 

  103. Allah KC, Yeo S, Kossoko H, Assi Dje Bi Dje V, Richard Kadio M. [Keloid scars on black skin: myth or reality]. Ann Chir Plast Esthet. 2013;58(2):115–22. https://doi.org/10.1016/j.anplas.2012.02.005.

    Article  CAS  Google Scholar 

  104. Ogawa R, Okai K, Tokumura F, Mori K, Ohmori Y, Huang C, et al. The relationship between skin stretching/contraction and pathologic scarring: the important role of mechanical forces in keloid generation. Wound Repair Regen. 2012;20(2):149–57. https://doi.org/10.1111/j.1524-475X.2012.00766.x.

    Article  PubMed  Google Scholar 

  105. Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int J Mol Sci. 2017;18(3). https://doi.org/10.3390/ijms18030606.

    Article  PubMed Central  Google Scholar 

  106. Thompson CM, Hocking AM, Honari S, Muffley LA, Ga M, Gibran NS. Genetic risk factors for hypertrophic scar development. J Burn Care Res. 2013;34(5):477–82. https://doi.org/10.1097/BCR.0b013e3182a2aa41.

    Article  PubMed  Google Scholar 

  107. Sood RF, Hocking AM, Muffley LA, Ga M, Honari S, Reiner AP, et al. Genome-wide association study of postburn scarring identifies a novel protective variant. Ann Surg. 2015;262(4):563–9. https://doi.org/10.1097/SLA.0000000000001439.

    Article  PubMed  Google Scholar 

  108. Colwell AS, Phan TT, Kong W, Longaker MT, Lorenz PH. Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-beta stimulation. Plast Reconstr Surg. 2005;116(5):1387–90; discussion 91–2

    Article  CAS  PubMed  Google Scholar 

  109. Lu L, Saulis AS, Liu WR, Roy NK, Chao JD, Ledbetter S, et al. The temporal effects of anti-TGF-beta1, 2, and 3 monoclonal antibody on wound healing and hypertrophic scar formation. J Am Coll Surg. 2005;201(3):391–7. https://doi.org/10.1016/j.jamcollsurg.2005.03.032.

    Article  PubMed  Google Scholar 

  110. Tuan TL, Nichter LS. The molecular basis of keloid and hypertrophic scar formation. Mol Med Today. 1998;4(1):19–24. https://doi.org/10.1016/S1357-4310(97)80541-2.

    Article  CAS  PubMed  Google Scholar 

  111. Ladwig GP, Robson MC, Liu R, Kuhn MA, Muir DF, Schultz GS. Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair Regen. 2002;10(1):26–37.

    Article  PubMed  Google Scholar 

  112. Bazalinski D, Przybek-Mita J, Baranska B, Wiech P. Marjolin’s ulcer in chronic wounds—review of available literature. Contemp Oncol (Pozn). 2017;21(3):197–202. https://doi.org/10.5114/wo.2017.70109.

    Article  Google Scholar 

  113. Copcu E. Marjolin’s ulcer: a preventable complication of burns? Plast Reconstr Surg. 2009;124(1):156e–64e. https://doi.org/10.1097/PRS.0b013e3181a8082e.

    Article  CAS  PubMed  Google Scholar 

  114. Trent JT, Kirsner RS. Wounds and malignancy. Adv Skin Wound Care. 2003;16(1):31–4.

    Article  PubMed  Google Scholar 

  115. Da LC, Huang YZ, Xie HQ. Progress in development of bioderived materials for dermal wound healing. Regen Biomater. 2017;4(5):325–34. https://doi.org/10.1093/rb/rbx025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Atarzadeh F, Kamalinejad M, Dastgheib L, Amin G, Jaladat AM, Nimrouzi M. Cassia fistula: a remedy from traditional Persian medicine for treatment of cutaneous lesions of pemphigus vulgaris. Avicenna J Phytomed. 2017;7(2):107–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Patel S, Srivastava S, Singh MR, Singh D. Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. Int J Biol Macromol. 2018;107(Pt B):1888–97. https://doi.org/10.1016/j.ijbiomac.2017.10.056.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole S. Gibran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Curtis, E., Gibran, N.S. (2020). Wound Healing. In: Jeschke, M., Kamolz, LP., Sjöberg, F., Wolf, S. (eds) Handbook of Burns Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-18940-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18940-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18939-6

  • Online ISBN: 978-3-030-18940-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics