Skip to main content

Critical Care in Burns

  • Chapter
  • First Online:
Handbook of Burns Volume 1

Abstract

Severe burns represent around 436,000 ambulatory care visits to hospital emergency departments in the United States [1]. A significant portion of these burns are minor; nevertheless between 40,000 and 60,000 burn patients undergo admission to a hospital [2]. Of all cases, nearly 4000 people die of complications related to the burn [3]. During the 1940s and 1950s, the burn size lethal to 50% of the population was 42% of total body surface area (TBSA). More recently, this number has increased to more than 90% TBSA in selected groups of patients. The devastating consequences of burns have been recognized by the medical community, and significant amounts of resources and research have been dedicated to improve our understanding and enhancing the way we manage patients, successfully improving these dismal statistics [3–5]. This significant improvement is secondary to the establishment of specialized burn centers, refinements in resuscitation strategies, advances in critical care, sepsis management and infection control, early excision of burn wounds, enhanced wound coverage, better support on the metabolic response to burns, and improved treatment of inhalation injury [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Hospital Ambulatory Medical Care Survey: 2013 Emergency Department Summary tables. In The Ambulatory and Hospital Care Statistics Branch, Editor. National Hospital Ambulatory Medical Care Survey. Centers for Disease Control and Prevention; 2013.

    Google Scholar 

  2. McDermott KW, Weiss AJ, Elixhauser A. Burn-related hospital inpatient stays and Emergency Department visits, 2013: statistical brief #217, in Healthcare Cost and Utilization Project (HCUP) statistical briefs. Rockville: Agency for Healthcare Research and Quality (US); 2006.

    Google Scholar 

  3. Herndon DN, editor. Total burn care. 3rd ed. Philadelphia: Saunders Elsevier; 2007.

    Google Scholar 

  4. Herndon DN, Tompkins RG. Support of the metabolic response to burn injury. Lancet. 2004;363(9424):1895–902.

    Article  CAS  PubMed  Google Scholar 

  5. Jeschke MG, et al. Handbook of burns, vol. 1. Wien: Springer; 2012.

    Book  Google Scholar 

  6. Kraft R, et al. Burn size and survival probability in paediatric patients in modern burn care: a prospective observational cohort study. Lancet. 2012;379(9820):1013–21.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jeschke MG, et al. Morbidity and survival probability in burn patients in modern burn care. Crit Care Med. 2015;43(4):808–15.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jeschke MG, et al. Pathophysiologic response to severe burn injury. Ann Surg. 2008;248(3):387–401.

    PubMed  Google Scholar 

  9. Shirani KZ, Pruitt BA Jr, Mason AD Jr. The influence of inhalation injury and pneumonia on burn mortality. Ann Surg. 1987;205(1):82–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen MC, et al. The impact of inhalation injury in patients with small and moderate burns. Burns. 2014;40(8):1481–6.

    Article  PubMed  Google Scholar 

  11. Enkhbaatar P, et al. Pathophysiology, research challenges, and clinical management of smoke inhalation injury. Lancet. 2016;388(10052):1437–46.

    Article  PubMed  PubMed Central  Google Scholar 

  12. ABA. 2011 National burn repository: report of data from 2001-2010. American Burn Association; 2011.

    Google Scholar 

  13. Maan ZN, et al. Burns ITU admissions: length of stay in specific levels of care for adult and paediatric patients. Burns. 2014;40(8):1458–62.

    Article  PubMed  Google Scholar 

  14. Williams FN, et al. The leading causes of death after burn injury in a single pediatric burn center. Crit Care. 2009;13(6):R183.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barrow RE, Jeschke MG, Herndon DN. Early fluid resuscitation improves outcomes in severely burned children. Resuscitation. 2000;45(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  16. Greenhalgh DG. Burn resuscitation. J Burn Care Res. 2007;28(4):555–65.

    Article  PubMed  Google Scholar 

  17. Greenhalgh DG. Burn resuscitation: the results of the ISBI/ABA survey. Burns. 2010;36(2):176–82.

    Article  PubMed  Google Scholar 

  18. Kraft R, et al. Optimized fluid management improves outcomes of pediatric burn patients. J Surg Res. 2013;181(1):121–8.

    Article  PubMed  Google Scholar 

  19. Wolf SE, et al. Mortality determinants in massive pediatric burns. An analysis of 103 children with > or = 80% TBSA burns (> or = 70% full-thickness). Ann Surg. 1997;225(5):554–65; discussion 565−9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wiggins-Dohlvik K, et al. Tissue inhibitor of metalloproteinase-2 inhibits burn-induced derangements and hyperpermeability in microvascular endothelial cells. Am J Surg. 2016;211(1):197–205.

    Article  PubMed  Google Scholar 

  21. Lund T, Onarheim H, Reed RK. Pathogenesis of edema formation in burn injuries. World J Surg. 1992;16(1):2–9.

    Article  CAS  PubMed  Google Scholar 

  22. Arturson G, Jakobsson OP. Oedema measurements in a standard burn model. Burns Incl Therm Inj. 1985;12(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Kremer T, et al. Burn plasma transfer induces burn edema in healthy rats. Shock. 2008;30(4):394–400.

    Article  PubMed  Google Scholar 

  24. Rae L, Fidler P, Gibran N. The physiologic basis of burn shock and the need for aggressive fluid resuscitation. Crit Care Clin. 2016;32(4):491–505.

    Article  PubMed  Google Scholar 

  25. Horton JW, et al. Postburn cardiac contractile function and biochemical markers of postburn cardiac injury. J Am Coll Surg. 1995;181(4):289–98.

    CAS  PubMed  Google Scholar 

  26. Klein MB, et al. The association between fluid administration and outcome following major burn: a multicenter study. Ann Surg. 2007;245(4):622–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pham TN, Cancio LC, Gibran NS. American Burn Association practice guidelines burn shock resuscitation. J Burn Care Res. 2008;29(1):257–66.

    Article  PubMed  Google Scholar 

  28. Salinas J, et al. Computerized decision support system improves fluid resuscitation following severe burns: an original study. Crit Care Med. 2011;39(9):2031–8.

    Article  PubMed  Google Scholar 

  29. Cancio LC, Salinas J, Kramer GC. Protocolized resuscitation of burn patients. Crit Care Clin. 2016;32(4):599–610.

    Article  PubMed  Google Scholar 

  30. Ivy ME, et al. Intra-abdominal hypertension and abdominal compartment syndrome in burn patients. J Trauma. 2000;49(3):387–91.

    Article  CAS  PubMed  Google Scholar 

  31. Bittner EA, et al. Acute and perioperative care of the burn-injured patient. Anesthesiology. 2015;122(2):448–64.

    Article  PubMed  Google Scholar 

  32. Greenhalgh DG, et al. American Burn Association consensus conference to define sepsis and infection in burns. J Burn Care Res. 2007;28(6):776–90.

    Article  PubMed  Google Scholar 

  33. Latenser BA. Critical care of the burn patient: the first 48 hours. Crit Care Med. 2009;37(10):2819–26.

    Article  CAS  PubMed  Google Scholar 

  34. Baxter CR, Shires T. Physiological response to crystalloid resuscitation of severe burns. Ann N Y Acad Sci. 1968;150(3):874–94.

    Article  CAS  PubMed  Google Scholar 

  35. Rivers E, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  36. Hodgman EI, et al. Future therapies in burn resuscitation. Crit Care Clin. 2016;32(4):611–9.

    Article  PubMed  Google Scholar 

  37. Saffle JI. The phenomenon of “fluid creep” in acute burn resuscitation. J Burn Care Res. 2007;28(3):382–95.

    Article  PubMed  Google Scholar 

  38. Faraklas I, et al. Colloid normalizes resuscitation ratio in pediatric burns. J Burn Care Res. 2011;32(1):91–7.

    Article  PubMed  Google Scholar 

  39. Cochran A, et al. Burn patient characteristics and outcomes following resuscitation with albumin. Burns. 2007;33(1):25–30.

    Article  PubMed  Google Scholar 

  40. Navickis RJ, Greenhalgh DG, Wilkes MM. Albumin in burn shock resuscitation: a meta-analysis of controlled clinical studies. J Burn Care Res. 2016;37(3):e268–78.

    Article  PubMed  Google Scholar 

  41. O’Mara MS, et al. A prospective, randomized evaluation of intra-abdominal pressures with crystalloid and colloid resuscitation in burn patients. J Trauma. 2005;58(5):1011–8.

    Article  PubMed  Google Scholar 

  42. Huzar TF, et al. Admission Rapid Thrombelastography (rTEG(R)) values predict resuscitation volumes and patient outcomes after thermal injury. J Burn Care Res. 2018;39(3):345.

    PubMed  Google Scholar 

  43. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;(2):CD000567.

    Google Scholar 

  44. Bunn F, Trivedi D. Colloid solutions for fluid resuscitation. Cochrane Database Syst Rev. 2012;(7):CD001319.

    Google Scholar 

  45. Cartotto R, Callum J. A review of the use of human albumin in burn patients. J Burn Care Res. 2012;33(6):702–17.

    Article  PubMed  Google Scholar 

  46. Snell JA, et al. Clinical review: the critical care management of the burn patient. Crit Care. 2013;17(5):241.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Palmieri TL, et al. Transfusion Requirement in Burn Care Evaluation (TRIBE): a multicenter randomized prospective trial of blood transfusion in major burn injury. Ann Surg. 2017;266(4):595–602.

    Article  PubMed  Google Scholar 

  48. Evans AE, et al. Cardiovascular responsiveness to vasopressin and alpha1-adrenergic receptor agonists after burn injury. J Burn Care Res. 2017;38(2):90–8.

    Article  PubMed  Google Scholar 

  49. Andel D, et al. Base deficit and lactate: early predictors of morbidity and mortality in patients with burns. Burns. 2007;33(8):973–8.

    Article  CAS  PubMed  Google Scholar 

  50. Jeng JC, et al. Serum lactate, not base deficit, rapidly predicts survival after major burns. Burns. 2002;28(2):161–6.

    Article  PubMed  Google Scholar 

  51. Husain FA, et al. Serum lactate and base deficit as predictors of mortality and morbidity. Am J Surg. 2003;185(5):485–91.

    Article  PubMed  Google Scholar 

  52. Guillory AN, et al. Cardiovascular dysfunction following burn injury: what we have learned from rat and mouse models. Int J Mol Sci. 2016;17(1):E53.

    Article  PubMed  CAS  Google Scholar 

  53. Branski LK, et al. Transpulmonary thermodilution for hemodynamic measurements in severely burned children. Crit Care. 2011;15(2):R118.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kuntscher MV, et al. Transcardiopulmonary vs pulmonary arterial thermodilution methods for hemodynamic monitoring of burned patients. J Burn Care Rehabil. 2002;23(1):21–6.

    Article  PubMed  Google Scholar 

  55. Etherington L, Saffle J, Cochran A. Use of transesophageal echocardiography in burns:a retrospective review. J Burn Care Res. 2010;31(1):36–9.

    Article  PubMed  Google Scholar 

  56. Paratz JD, et al. Burn resuscitation--hourly urine output versus alternative endpoints: a systematic review. Shock. 2014;42(4):295–306.

    Article  PubMed  Google Scholar 

  57. Kuntscher MV, Germann G, Hartmann B. Correlations between cardiac output, stroke volume, central venous pressure, intra-abdominal pressure and total circulating blood volume in resuscitation of major burns. Resuscitation. 2006;70(1):37–43.

    Article  PubMed  Google Scholar 

  58. Ivy ME, et al. Abdominal compartment syndrome in patients with burns. J Burn Care Rehabil. 1999;20(5):351–3.

    Article  CAS  PubMed  Google Scholar 

  59. Hershberger RC, et al. Abdominal compartment syndrome in the severely burned patient. J Burn Care Res. 2007;28(5):708–14.

    Article  PubMed  Google Scholar 

  60. Balogh ZJ, et al. Postinjury abdominal compartment syndrome: from recognition to prevention. Lancet. 2014;384(9952):1466–75.

    Article  PubMed  Google Scholar 

  61. Milner SM, et al. Cody. Eplasty. 2015;15:e35.

    PubMed  PubMed Central  Google Scholar 

  62. Birman C, Beckenham E. Acquired tracheo-esophageal fistula in the pediatric population. Int J Pediatr Otorhinolaryngol. 1998;44(2):109–13.

    Article  CAS  PubMed  Google Scholar 

  63. Chung KK, et al. High-frequency percussive ventilation and low tidal volume ventilation in burns: a randomized controlled trial. Crit Care Med. 2010;38(10):1970–7.

    Article  PubMed  Google Scholar 

  64. Kennedy JD, et al. ECMO in major burn patients: feasibility and considerations when multiple modes of mechanical ventilation fail. Burns Trauma. 2017;5:20.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Smailes ST, Martin RV, McVicar AJ. The incidence and outcome of extubation failure in burn intensive care patients. J Burn Care Res. 2009;30(3):386–92.

    Article  PubMed  Google Scholar 

  66. Palmieri TL, et al. Inhalation injury in children: a 10 year experience at Shriners Hospitals for Children. J Burn Care Res. 2009;30(1):206–8.

    Article  PubMed  Google Scholar 

  67. Nayyar A, Charles AG, Hultman CS. Management of pulmonary failure after burn injury: from VDR to ECMO. Clin Plast Surg. 2017;44(3):513–20.

    Article  PubMed  Google Scholar 

  68. Sutton T, et al. Severity of inhalation injury is predictive of alterations in gas exchange and worsened clinical outcomes. J Burn Care Res. 2017;38:390–5.

    Article  PubMed  Google Scholar 

  69. Sheridan RL, Hess D. Inhaled nitric oxide in inhalation injury. J Burn Care Res. 2009;30(1):162–4.

    Article  PubMed  Google Scholar 

  70. Endorf FW, Gamelli RL. Inhalation injury, pulmonary perturbations, and fluid resuscitation. J Burn Care Res. 2007;28(1):80–3.

    Article  PubMed  Google Scholar 

  71. Kealey GP. Carbon monoxide toxicity. J Burn Care Res. 2009;30(1):146–7.

    Article  PubMed  Google Scholar 

  72. Erdman AR. Is hydroxocobalamin safe and effective for smoke inhalation? Searching for guidance in the haze. Ann Emerg Med. 2007;49(6):814–6.

    Article  PubMed  Google Scholar 

  73. Nguyen L, et al. Utility and outcomes of hydroxocobalamin use in smoke inhalation patients. Burns. 2017;43(1):107–13.

    Article  PubMed  Google Scholar 

  74. Finnerty CC, Herndon DN, Jeschke MG. Inhalation injury in severely burned children does not augment the systemic inflammatory response. Crit Care. 2007;11(1):R22.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bai C, et al. Application of flexible bronchoscopy in inhalation lung injury. Diagn Pathol. 2013;8:174.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Weaver LK. Clinical practice. Carbon monoxide poisoning. N Engl J Med. 2009;360(12):1217–25.

    Article  CAS  PubMed  Google Scholar 

  77. Holm C, et al. Effect of crystalloid resuscitation and inhalation injury on extravascular lung water. Chest. 2002;121(6):1956–62.

    Article  PubMed  Google Scholar 

  78. Barrow RE, et al. Mortality related to gender, age, sepsis, and ethnicity in severely burned children. Shock. 2005;23(6):485–7.

    PubMed  Google Scholar 

  79. Miller AC, Elamin EM, Suffredini AF. Inhaled anticoagulation regimens for the treatment of smoke inhalation-associated acute lung injury: a systematic review. Crit Care Med. 2014;42(2):413–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Glas GJ, et al. HEPBURN - investigating the efficacy and safety of nebulized heparin versus placebo in burn patients with inhalation trauma: study protocol for a multi-center randomized controlled trial. Trials. 2014;15:91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Enkhbaatar P, et al. Inducible nitric oxide synthase dimerization inhibitor prevents cardiovascular and renal morbidity in sheep with combined burn and smoke inhalation injury. Am J Physiol Heart Circ Physiol. 2003;285(6):H2430–6.

    Article  CAS  PubMed  Google Scholar 

  82. Foncerrada G, et al. Safety of nebulized epinephrine in smoke inhalation injury. J Burn Care Res. 2017;38(6):396–402.

    Article  PubMed  Google Scholar 

  83. Tabrizi MB, et al. Inhaled epoprostenol improves oxygenation in severe hypoxemia. J Trauma Acute Care Surg. 2012;73(2):503–6.

    Article  PubMed  Google Scholar 

  84. Carlson DL, Horton JW. Cardiac molecular signaling after burn trauma. J Burn Care Res. 2006;27(5):669–75.

    Article  PubMed  Google Scholar 

  85. Marano MA, et al. Serum cachectin/tumor necrosis factor in critically ill patients with burns correlates with infection and mortality. Surg Gynecol Obstet. 1990;170(1):32–8.

    CAS  PubMed  Google Scholar 

  86. Kim HS, et al. Changes in the levels of interleukins 6, 8, and 10, tumor necrosis factor alpha, and granulocyte-colony stimulating factor in Korean burn patients: relation to burn size and postburn time. Ann Lab Med. 2012;32(5):339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jeschke MG, et al. Long-term persistance of the pathophysiologic response to severe burn injury. PLoS One. 2011;6(7):e21245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hung TY, et al. Increased risk of ischemic stroke in patients with burn injury: a nationwide cohort study in Taiwan. Scand J Trauma Resusc Emerg Med. 2016;24:44.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cubitt JJ, et al. Intensive care unit-acquired weakness in the burn population. J Plast Reconstr Aesthet Surg. 2016;69(5):e105–9.

    Article  PubMed  Google Scholar 

  90. de Jonge E, Bos MM. Patients with cancer on the ICU: the times they are changing. Crit Care. 2009;13(2):122.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gore DC, et al. Influence of fever on the hypermetabolic response in burn-injured children. Arch Surg. 2003;138(2):169–74; discussion 174.

    Article  PubMed  Google Scholar 

  92. Hogan BK, et al. Correlation of American Burn Association sepsis criteria with the presence of bacteremia in burned patients admitted to the intensive care unit. J Burn Care Res. 2012;33(3):371–8.

    Article  PubMed  Google Scholar 

  93. Murray CK, et al. Evaluation of white blood cell count, neutrophil percentage, and elevated temperature as predictors of bloodstream infection in burn patients. Arch Surg. 2007;142(7):639–42.

    Article  PubMed  Google Scholar 

  94. Davis SL, et al. Sustained impairments in cutaneous vasodilation and sweating in grafted skin following long-term recovery. J Burn Care Res. 2009;30(4):675–85.

    Article  PubMed  Google Scholar 

  95. Bernal E, Wolf S, Cripps M. New-onset, postoperative tachyarrhythmias in critically ill surgical patients. Burns. 2018;44(2):249–55.

    Article  PubMed  Google Scholar 

  96. Goff DR, et al. Cardiac disease and the patient with burns. J Burn Care Rehabil. 1990;11(4):305–7.

    Article  CAS  PubMed  Google Scholar 

  97. Bouadma L, Wolff M, Lucet JC. Ventilator-associated pneumonia and its prevention. Curr Opin Infect Dis. 2012;25(4):395–404.

    Article  PubMed  Google Scholar 

  98. Sen S, et al. Ventilator-associated pneumonia prevention bundle significantly reduces the risk of ventilator-associated pneumonia in critically ill burn patients. J Burn Care Res. 2016;37(3):166–71.

    Article  PubMed  Google Scholar 

  99. Bassetti M, et al. Management of ventilator-associated pneumonia: epidemiology, diagnosis and antimicrobial therapy. Expert Rev Anti Infect Ther. 2012;10(5):585–96.

    Article  CAS  PubMed  Google Scholar 

  100. Mosier MJ, et al. Early enteral nutrition in burns: compliance with guidelines and associated outcomes in a multicenter study. J Burn Care Res. 2011;32(1):104–9.

    Article  PubMed  Google Scholar 

  101. Lam NN, Tien NG, Khoa CM. Early enteral feeding for burned patients--an effective method which should be encouraged in developing countries. Burns. 2008;34(2):192–6.

    Article  PubMed  Google Scholar 

  102. Raff T, Hartmann B, Germann G. Early intragastric feeding of seriously burned and long-term ventilated patients: a review of 55 patients. Burns. 1997;23(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  103. Markell KW, et al. Abdominal complications after severe burns. J Am Coll Surg. 2009;208(5):940–7; discussion 947−9

    Article  PubMed  Google Scholar 

  104. Williams FN, et al. Modulation of the hypermetabolic response to trauma: temperature, nutrition, and drugs. J Am Coll Surg. 2009;208(4):489–502.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pereira C, Murphy K, Herndon D. Outcome measures in burn care. Is mortality dead? Burns. 2004;30(8):761–71.

    Article  PubMed  Google Scholar 

  106. Pereira CT, et al. Age-dependent differences in survival after severe burns: a unicentric review of 1,674 patients and 179 autopsies over 15 years. J Am Coll Surg. 2006;202(3):536–48.

    Article  PubMed  Google Scholar 

  107. Jeschke MG. The hepatic response to thermal injury: is the liver important for postburn outcomes? Mol Med. 2009;15(9-10):337–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Price LA, et al. Liver disease in burn injury: evidence from a national sample of 31,338 adult patients. J Burns Wounds. 2007;7:e1.

    PubMed  PubMed Central  Google Scholar 

  109. Jeschke MG, et al. Insulin protects against hepatic damage postburn. Mol Med. 2011;17(5-6):516–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gauglitz GG, et al. Post-burn hepatic insulin resistance is associated with endoplasmic reticulum (ER) stress. Shock. 2010;33(3):299–305.

    Article  CAS  PubMed  Google Scholar 

  111. Song J, et al. Severe burn-induced endoplasmic reticulum stress and hepatic damage in mice. Mol Med. 2009;15(9−10):316–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Jeschke MG, et al. Calcium and Er stress mediate hepatic apoptosis after burn injury. J Cell Mol Med. 2009;13:1857–65.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jeschke MG, Micak RP, Finnerty CC, Herndon DN. Changes in liver function and size after a severe thermal injury. Shock. 2007;28:172–7.

    Article  PubMed  Google Scholar 

  114. Jeschke MG, et al. Changes in liver function and size after a severe thermal injury. Shock. 2007;28(2):172–7.

    Article  PubMed  Google Scholar 

  115. Bohanon FJ, et al. Burn trauma acutely increases the respiratory capacity and function of liver mitochondria. Shock. 2018;49(4):466–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Senel E, et al. The evaluation of the adrenal and thyroid axes and glucose metabolism after burn injury in children. J Pediatr Endocrinol Metab. 2010;23(5):481–9.

    Article  CAS  PubMed  Google Scholar 

  117. Gore DC, et al. Association of hyperglycemia with increased mortality after severe burn injury. J Trauma. 2001;51(3):540–4.

    CAS  PubMed  Google Scholar 

  118. Pham TN, et al. Impact of tight glycemic control in severely burned children. J Trauma. 2005;59(5):1148–54.

    Article  PubMed  Google Scholar 

  119. Jeschke MG. Clinical review: glucose control in severely burned patients - current best practice. Crit Care. 2013;17(4):232.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Baxter CR. Metabolism and nutrition in burned patients. Compr Ther. 1987;13(1):36–42.

    CAS  PubMed  Google Scholar 

  121. Medlin S. Nutrition for wound healing. Br J Nurs. 2012;21(12):S11–2, S14−5

    Article  PubMed  Google Scholar 

  122. Berger M. Acute copper and zinc deficiency due to exudative losses - substitution versus nutritional requirements - [Burns 2005;31(6): 711-6]. Burns. 2006;32(3):393.

    Article  PubMed  Google Scholar 

  123. Kremer T, et al. High-dose vitamin C treatment reduces capillary leakage after burn plasma transfer in rats. J Burn Care Res. 2010;31(3):470–9.

    Article  PubMed  Google Scholar 

  124. Tanaka H, et al. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg. 2000;135(3):326–31.

    Article  CAS  PubMed  Google Scholar 

  125. Buehner M, et al. Oxalate nephropathy after continuous infusion of high-dose vitamin C as an adjunct to burn resuscitation. J Burn Care Res. 2016;37(4):e374–9.

    Article  PubMed  Google Scholar 

  126. Chrysopoulo MT, et al. Acute renal dysfunction in severely burned adults. J Trauma. 1999;46(1):141–4.

    Article  CAS  PubMed  Google Scholar 

  127. Jeschke MG, et al. Mortality in burned children with acute renal failure. Arch Surg. 1998;133(7):752–6.

    Article  CAS  PubMed  Google Scholar 

  128. Kallinen O, et al. Multiple organ failure as a cause of death in patients with severe burns. J Burn Care Res. 2012;33(2):206–11.

    Article  PubMed  Google Scholar 

  129. Clark A, et al. Acute kidney injury after burn. Burns. 2017;43(5):898–908.

    Article  PubMed  Google Scholar 

  130. Holm C, et al. Acute renal failure in severely burned patients. Burns. 1999;25(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  131. Mosier MJ, Lasinski AM, Gamelli RL. Suspected adrenal insufficiency in critically ill burned patients: etomidate-induced or critical illness-related corticosteroid insufficiency?-A review of the literature. J Burn Care Res. 2015;36(2):272–8.

    Article  PubMed  Google Scholar 

  132. Fuchs P, et al. Cortisol in severely burned patients: investigations on disturbance of the hypothalamic-pituitary-adrenal axis. Shock. 2007;28(6):662–7.

    CAS  PubMed  Google Scholar 

  133. Gangemi EN, et al. Low triiodothyronine serum levels as a predictor of poor prognosis in burn patients. Burns. 2008;34(6):817–24.

    Article  PubMed  Google Scholar 

  134. Herndon DN, et al. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med. 2001;345(17):1223–9.

    Article  CAS  PubMed  Google Scholar 

  135. Morio B, et al. Propranolol decreases splanchnic triacylglycerol storage in burn patients receiving a high-carbohydrate diet. Ann Surg. 2002;236(2):218–25.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Breitenstein E, et al. Effects of beta-blockade on energy metabolism following burns. Burns. 1990;16(4):259–64.

    Article  CAS  PubMed  Google Scholar 

  137. Jeschke MG, et al. The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn. Ann Surg. 2007;246(3):351–60; discussion 360−2

    Article  PubMed  PubMed Central  Google Scholar 

  138. Li H, et al. The efficacy and safety of oxandrolone treatment for patients with severe burns: a systematic review and meta-analysis. Burns. 2016;42(4):717–27.

    Article  PubMed  Google Scholar 

  139. Klein GL. Burn-induced bone loss: importance, mechanisms, and management. J Burns Wounds. 2006;5:e5.

    PubMed  PubMed Central  Google Scholar 

  140. Jeschke MG, et al. Combination of recombinant human growth hormone and propranolol decreases hypermetabolism and inflammation in severely burned children. Pediatr Crit Care Med. 2008;9(2):209–16.

    Article  PubMed  Google Scholar 

  141. Takala J, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999;341(11):785–92.

    Article  CAS  PubMed  Google Scholar 

  142. Diaz EC, et al. Effects of pharmacological interventions on muscle protein synthesis and breakdown in recovery from burns. Burns. 2015;41(4):649–57.

    Article  PubMed  Google Scholar 

  143. Pierre EJ, et al. Effects of insulin on wound healing. J Trauma. 1998;44(2):342–5.

    Article  CAS  PubMed  Google Scholar 

  144. Tappy L, et al. Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients. Crit Care Med. 1998;26(5):860–7.

    Article  CAS  PubMed  Google Scholar 

  145. Burke JF, et al. Glucose requirements following burn injury. Parameters of optimal glucose infusion and possible hepatic and respiratory abnormalities following excessive glucose intake. Ann Surg. 1979;190(3):274–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gore DC, et al. Influence of metformin on glucose intolerance and muscle catabolism following severe burn injury. Ann Surg. 2005;241(2):334–42.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Murphey ED, et al. Up-regulation of the parathyroid calcium-sensing receptor after burn injury in sheep: a potential contributory factor to postburn hypocalcemia. Crit Care Med. 2000;28(12):3885–90.

    Article  CAS  PubMed  Google Scholar 

  148. Sam R, et al. Hypercalcemia in patients in the burn intensive care unit. J Burn Care Res. 2007;28(5):742–6.

    Article  PubMed  Google Scholar 

  149. Przkora R, et al. Body composition changes with time in pediatric burn patients. J Trauma. 2006;60(5):968–71; discussion 971

    Article  PubMed  Google Scholar 

  150. Przkora R, Herndon DN, Suman OE. The effects of oxandrolone and exercise on muscle mass and function in children with severe burns. Pediatrics. 2007;119(1):e109–16.

    Article  PubMed  Google Scholar 

  151. Peterson SL, et al. Postburn heterotopic ossification: insights for management decision making. J Trauma. 1989;29(3):365–9.

    Article  CAS  PubMed  Google Scholar 

  152. Vanden Bossche L, Vanderstraeten G. Heterotopic ossification: a review. J Rehabil Med. 2005;37(3):129–36.

    Article  Google Scholar 

  153. Jeschke MG, et al. Endogenous anabolic hormones and hypermetabolism: effect of trauma and gender differences. Ann Surg. 2005;241(5):759–67; discussion 767−8

    Article  PubMed  PubMed Central  Google Scholar 

  154. Jeschke MG, et al. Gender differences in pediatric burn patients: does it make a difference? Ann Surg. 2008;248(1):126–36.

    Article  PubMed  Google Scholar 

  155. Przkora R, et al. Beneficial effects of extended growth hormone treatment after hospital discharge in pediatric burn patients. Ann Surg. 2006;243(6):796–801; discussion 801−3

    Article  PubMed  PubMed Central  Google Scholar 

  156. Rousseau AF, et al. Bone markers during acute burn care: relevance to clinical practice? Burns. 2017;43(1):176–81.

    Article  PubMed  Google Scholar 

  157. Roshanzamir S, Partovi A, Dabbaghmanesh A. Prevalence and severity of bone loss in burned patients. Burns. 2017;43(4):766–70.

    Article  PubMed  Google Scholar 

  158. Klein GL, et al. The efficacy of acute administration of pamidronate on the conservation of bone mass following severe burn injury in children: a double-blind, randomized, controlled study. Osteoporos Int. 2005;16(6):631–5.

    Article  CAS  PubMed  Google Scholar 

  159. Przkora R, et al. Pamidronate preserves bone mass for at least 2 years following acute administration for pediatric burn injury. Bone. 2007;41(2):297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mayes T, et al. Investigation of bone health subsequent to vitamin D supplementation in children following burn injury. Nutr Clin Pract. 2015;30(6):830–7.

    Article  CAS  PubMed  Google Scholar 

  161. Rousseau AF, et al. Effects of cholecalciferol supplementation and optimized calcium intakes on vitamin D status, muscle strength and bone health: a one-year pilot randomized controlled trial in adults with severe burns. Burns. 2015;41(2):317–25.

    Article  PubMed  Google Scholar 

  162. Amrein K, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312(15):1520–30.

    Article  PubMed  CAS  Google Scholar 

  163. Midura EF, et al. Impact of platelets and platelet-derived microparticles on hypercoagulability following burn injury. Shock. 2016;45(1):82–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lippi G, Ippolito L, Cervellin G. Disseminated intravascular coagulation in burn injury. Semin Thromb Hemost. 2010;36(4):429–36.

    Article  PubMed  Google Scholar 

  165. King DR, Namias N, Andrews DM. Coagulation abnormalities following thermal injury. Blood Coagul Fibrinolysis. 2010;21(7):666–9.

    Article  PubMed  Google Scholar 

  166. Garcia-Avello A, et al. Degree of hypercoagulability and hyperfibrinolysis is related to organ failure and prognosis after burn trauma. Thromb Res. 1998;89(2):59–64.

    Article  CAS  PubMed  Google Scholar 

  167. Geerts WH, et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133(6 Suppl):381S–453S.

    Article  CAS  PubMed  Google Scholar 

  168. Palmieri TL, Greenhalgh DG, Sen S. Prospective comparison of packed red blood cell-to-fresh frozen plasma transfusion ratio of 4: 1 versus 1: 1 during acute massive burn excision. J Trauma Acute Care Surg. 2013;74(1):76–83.

    Article  PubMed  Google Scholar 

  169. Sherren PB, et al. Acute burn induced coagulopathy. Burns. 2013;39(6):1157–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taveras, L.R., Jeschke, M.G., Wolf, S.E. (2020). Critical Care in Burns. In: Jeschke, M., Kamolz, LP., Sjöberg, F., Wolf, S. (eds) Handbook of Burns Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-18940-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18940-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18939-6

  • Online ISBN: 978-3-030-18940-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics