Skip to main content

Respiratory Management in Burn Care

  • Chapter
  • First Online:
Handbook of Burns Volume 1
  • 1813 Accesses

Abstract

Airway and respiratory management are necessary and important components of burn care because a significant minority of burn patients requires intubation and mechanical ventilation, often for weeks or even months. Burn patients require respiratory management for two major reasons: the presence of smoke inhalation injury (II) and/or a large percent total body surface area (% TBSA) burn. Inhalation of the products of combustion causes a cascade of injury and inflammatory response that typically leads to respiratory failure and the need for intubation and ventilation. Likewise, a large % TBSA thermal injury (typically ≥30% TBSA) imposes such a large systemic metabolic load on patients that intubation and ventilation are almost always necessary. This chapter reviews general concepts of airway and respiratory management in burn patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cha S, Kim C, Lee J, et al. Isolated smoke inhalation injuries: acute respiratory dysfunction, clinical outcomes, and short term evolution of pulmonary function with the effects of steroids. Burns. 2007;33(2):200–9.

    Article  PubMed  Google Scholar 

  2. Ching JA, Ching YH, Shivers SC, et al. An analysis of inhalation injury diagnostic methods and patient outcomes. J Burn Care Res. 2016;37(1):e27–32.

    Article  PubMed  Google Scholar 

  3. Hassan Z, Wong JK, Bush J, et al. Assessing the severity of inhalation injuries in adults. Burns. 2010;36(2):212–6.

    Article  CAS  PubMed  Google Scholar 

  4. Ikonomidis C, Lang F, Radu A, et al. Standardizing the diagnosis of inhalation injury using a descriptive score based on mucosal injury criteria. Burns. 2012;38(4):513–9.

    Article  PubMed  Google Scholar 

  5. Mlcak R, Suman O, Herndon D. Respiratory management of inhalation injury. Burns. 2007;33(1):2–13.

    Article  PubMed  Google Scholar 

  6. Walker PF, Buehner MF, Wood LA, et al. Diagnosis and management of inhalation injury: an updated review. Crit Care. 2015;19:351.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kealey GP. Carbon monoxide toxicity. J Burn Care Res. 2009;30(1):146–7.

    Article  PubMed  Google Scholar 

  8. Purdue G. To trach or not to trach. J Burn Care Res. 2009;30(1):192–3.

    Article  PubMed  Google Scholar 

  9. Eckhauser F, Billote J, Burke J, et al. Tracheostomy complicating massive burn injury. A plea for conservation. Am J Surg. 1974;127(4):418–23.

    Article  CAS  PubMed  Google Scholar 

  10. Clark W, Bonaventura M, Myers W, et al. Smoke inhalation and airway management at a regional burn unit: 1974 to 1983. II airway management. J Burn Care Rehabil. 1990;11(2):121–34.

    Article  CAS  PubMed  Google Scholar 

  11. Saffle JR, Morris SE, Edelman L. Early tracheostomy does not improve outcome in burn patients. J Burn Care Rehabil. 2002;23(6):431–8.

    Article  PubMed  Google Scholar 

  12. Palmieri T. Benefits of early tracheostomy in severely burned children. Crit Care Med. 2002;30(4):922–4.

    Article  PubMed  Google Scholar 

  13. Aggarwal S, Smailes S, Dziewulski P. Tracheostomy in burns patients revisited. Burns. 2009;35(7):962–6.

    Article  PubMed  Google Scholar 

  14. Lipovy B, Brychta P, Rihova H, et al. Effect of timing of tracheostomy on changes in bacterial colonisation of the lower respiratory tract in burned children. Burns. 2013;39(2):255–61.

    Article  CAS  PubMed  Google Scholar 

  15. Chung KK, Rhie RY, Lundy JB, et al. A survey of mechanical ventilator practices across burn centers in North America. J Burn Care Res. 2016;37(2):e131–9.

    Article  PubMed  Google Scholar 

  16. Caruso D. Percutaneous dilatational tracheostomy. J Burn Care Res. 2009;30(1):194–5.

    Article  PubMed  Google Scholar 

  17. Feldman M, Milner S, Dhanjani K, et al. Semi-open percutaneous tracheostomy inburn patients. Burns. 2011;37(6):1072–8.

    Article  PubMed  Google Scholar 

  18. Gravvanis A, Tsoutsos D, Iconomou T, et al. Percutaneous versus conventional tracheostomy in burned patients with inhalation injury. World J Surg. 2005;29(12):1571–5.

    Article  PubMed  Google Scholar 

  19. Smailes ST, Ives M, Richardson P, et al. Percutaneous dilational and surgical tracheostomy in burn patients: incidence of complications and dysphagia. Burns. 2014;40(3):436–42.

    Article  CAS  PubMed  Google Scholar 

  20. The ARDS Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory ditress syndrome. NEJM. 2000;342(18):1301–8.

    Article  Google Scholar 

  21. Amato M, Barbas C, Medieros D, et al. Effect of a protective lung strategy on mortality in ARDS. N Engl J Med. 1998;338:347–454.

    Article  CAS  PubMed  Google Scholar 

  22. Brouchard L, Roudot-Toraval F, Roupie E. Tidal volume reduction for prevention of ventilator-induced lung injury in ARDS. Am J Respir Crit Care Med. 1998;158(6):1831–8.

    Article  Google Scholar 

  23. Brower R, Stanholz C, Fessler H, et al. Prospective randomized controlled trial comparing traditional vs. reduced volumes for ALI or ARDS. Crit Care Med. 1999;27:1492–8.

    Article  CAS  PubMed  Google Scholar 

  24. Neto A, Cardoso S, Manetta J, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome. JAMA. 2012;308(16):1651–9.

    Article  Google Scholar 

  25. Stewart T, Meade M, Cook D, et al. Evaluation of a strategy to prevent barotrauma in patients at high risk for ARDS: pressure and limited volume ventilation group. N Engl J Med. 2000;342:1301–8.

    Article  Google Scholar 

  26. Spieth PM, Guldner A, Carvalho AR, et al. Open lung approach vs acute respiratory distress syndrome network ventilation in experimental acute lung injury. Br J Anaesth. 2011;107(3):388–97.

    Article  CAS  PubMed  Google Scholar 

  27. Meade M, Cook D, Guyatt G, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome. JAMA. 2008;299(6):637–45.

    Article  CAS  PubMed  Google Scholar 

  28. Keenan J, Formenti P, Marini J. Lung recruitment in acute respiratory distress syndrome: what is the best strategy? Curr Opin Crit Care. 2014;20(1):63–8.

    Article  PubMed  Google Scholar 

  29. Santos RS, Silva PL, Pelosi P, et al. Recruitment maneuvers in acute respiratory distress syndrome: the safe way is the best way. World J Crit Care Med. 2015;4(4):278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Suzumura E, Figeiro M, Normillo-Silva K, et al. Effects of alveolar recruitment maneuvers on clinical outcomes in patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Intensive Care Med. 2014;40(9):122701240.

    Article  Google Scholar 

  31. Rubenfeld G. How much PEEP in acute lung injury. JAMA. 2010;303(9):883–4.

    Article  CAS  PubMed  Google Scholar 

  32. ART Investigators Writing Group. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318(14):1335–45.

    Article  Google Scholar 

  33. Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865–73.

    Article  CAS  PubMed  Google Scholar 

  34. Brower R, Lanken P, MaIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327–36.

    Article  PubMed  Google Scholar 

  35. Guerin C. The preventive role of higher PEEP in treating severely hypoxemic ARDS. Minerva Anesthesiol. 2011;77(8):835–45.

    CAS  Google Scholar 

  36. Kacmarek R, Villar J, Sulemanji D. Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial. Crit Care Med. 2016;44(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  37. Mercat A, Richard J, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646–55.

    Article  CAS  PubMed  Google Scholar 

  38. Deranged Physiology. Optimal PEEP for open lung ventilation in ARDS. http://www.derangedphysiology.com/main/required-reading/respiratory-medicine-and-ventilation/Chapter 5.1.2.1/optimal-peep-open-lung-ventilation-ards. Accessed 14 July 2016.

  39. Bautista A, Akca O. Hypercapnia: is it protective in lung injury? Med Gas Res. 2013;3(23):1–6.

    Google Scholar 

  40. Amato M, Barbas C, Medeiros D, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–54.

    Article  CAS  PubMed  Google Scholar 

  41. Fuchs H, Rossmann N, Schmid MB, et al. Permissive hypercapnia for severe acute respiratory distress syndrome in immunocompromised children: a single center experience. PLoS One. 2017;12(6):e0179974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nin N, Muriel A, Penuelas O, et al. Severe hypercapnia and out- come of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med. 2017;43:200–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cioffi WG, Graves TA, McManus WF, et al. High-frequency percussive ventilation in patients with inhalation injury. J Trauma Injury Infec Crit Care. 1989;29(3):350–4.

    Article  CAS  Google Scholar 

  44. Cioffi WG Jr, Rue LW 3rd, Graves TA, et al. Prophylactic use of high-frequency percussive ventilation in patients with inhalation injury. Ann Surg. 1991;213(6):575–80; discussion 580-2.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cortiella J, Mlcak R, Herndon D. High frequency percussive ventilation in pediatric patients with inhalation injury. J Burn Care Rehabil. 1999;20(3):232–5.

    Article  CAS  PubMed  Google Scholar 

  46. Reper P, Dankaert R, van Hille F, et al. The usefulness of combined high-frequency percussive ventilation during acute respiratory failure after smoke inhalation. Burns. 1998;24(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  47. Reper P, Wibaux O, Van Laeke P, et al. High frequency percussive ventilation and conventional ventilation after smoke inhalation: a randomised study. Burns. 2002;28(5):503–8.

    Article  CAS  PubMed  Google Scholar 

  48. Carmen B, Cahill T, Warden G. A prospective randomized comparison of the volume diffusive respirator vs conventional ventilation for ventilation of burned children. J Burn Care Rehabil. 2002;23(6):444–8.

    Article  Google Scholar 

  49. Chung KK, Wolf SE, Renz EM, et al. High-frequency percussive ventilation and low tidal volume ventilation in burns: a randomized controlled trial. Crit Care Med. 2010;38(10):1970–7.

    Article  PubMed  Google Scholar 

  50. Al Ashry HS, Mansour G, Kalil AC, et al. Incidence of ventilator associated pneumonia in burn patients with inhalation injury treated with high frequency percussive ventilation versus volume control ventilation: a systematic review. Burns. 2016;42(6):1193–200.

    Article  PubMed  Google Scholar 

  51. Eastman A, Holland D, Higgins J, et al. High-frequency percussive ventilation improves oxygenation in trauma patients with acute respiratory distress syndrome: a retrospective review. Am J Surg. 2006;192(2):191–5.

    Article  PubMed  Google Scholar 

  52. Gallagher TJ, Boysen PG, Davidson DD, et al. High-frequency percussive ventilation compared with conventional mechanical ventilation. Crit Care Med. 1989;17(4):364–6.

    Article  CAS  PubMed  Google Scholar 

  53. Godet T, Jabaudon M, Blondonnet R, et al. High frequency percussive ventilation increases alveolar recruitment in early acute respiratory distress syndrome: an experimental, physiological and CT scan study. Crit Care. 2018;22(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hall JJ, Hunt JL, Arnoldo BD, et al. Use of high-frequency percussive ventilation in inhalation injuries. J Burn Care Res. 2007;28(3):396–400.

    Article  PubMed  Google Scholar 

  55. Hiller KN, Morgan CK. High-frequency percussive ventilation for severe inhalation injury. Anesthesiology. 2014;120(4):998.

    Article  PubMed  Google Scholar 

  56. Kacmarek RM, Villar J. Clinical repercussions of high-frequency percussive ventilation: a burning issue. Crit Care Med. 2010;38(10):2069–70.

    Article  PubMed  Google Scholar 

  57. Kunugiyama SK, Schulman CS. High-frequency percussive ventilation using the VDR-4 ventilator: an effective strategy for patients with refractory hypoxemia. AACN Adv Crit Care. 2012;23(4):370–80.

    Article  PubMed  Google Scholar 

  58. Lucangelo U, Antonaglia V, Gullo A, et al. High-frequency percussive ventilation. Crit Care Med. 2005;33(9):2155; author reply 2155–6.

    Article  PubMed  Google Scholar 

  59. Lucangelo U, Fontanesi L, Antonaglia V, et al. High frequency percussive ventilation (HFPV). Principles and technique. Minerva Anestesiol. 2003;69(11):841–8, 848–51.

    CAS  PubMed  Google Scholar 

  60. Reper P, Van Bos R, Van Loey K, et al. High frequency percussive ventilation in burn patients: hemodynamics and gas exchange. Burns. 2003;29(6):603–8.

    Article  CAS  PubMed  Google Scholar 

  61. Rizkalla NA, Dominick CL, Fitzgerald JC, et al. High-frequency percussive ventilation improves oxygenation and ventilation in pediatric patients with acute respiratory failure. J Crit Care. 2014;29(2):314.e1–7.

    Article  Google Scholar 

  62. Salim A, Martin M. High-frequency percussive ventilation. Crit Care Med. 2005;33(3 Suppl):S241–5.

    Article  PubMed  Google Scholar 

  63. Salim A, Miller K, Dangleben D, et al. High-frequency percussive ventilation: an alternative mode of ventilation for head-injured patients with adult respiratory distress syndrome. J Trauma Injury Infect Crit Care. 2004;57(3):542–6.

    Article  Google Scholar 

  64. Spapen H, Borremans M, Diltoer M, et al. High-frequency percussive ventilation in severe acute respiratory distress syndrome: a single center experience. J Anaesthesiol Clin Pharmacol. 2014;30(1):65–70.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ferguson N, Slutsky A. Point: high-frequency ventilation is the optimal physiological approach to ventilate ARDS patients. J Appl Physiol. 2008;104(4):1230–1.

    Article  PubMed  Google Scholar 

  66. Bouchut J, Godard J, Claris O. High-frequency oscillatory ventilation. Anesthesiology. 2004;100(4):1007–12.

    Article  PubMed  Google Scholar 

  67. Ferguson ND, Cook D, Guyatt G, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368(9):795–805.

    Article  CAS  PubMed  Google Scholar 

  68. The HIFI Study Group. High-frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. N Engl J Med. 1989;320(2):88–93.

    Article  Google Scholar 

  69. Young D, Lamb S, Shah S, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368(9):806–13.

    Article  CAS  PubMed  Google Scholar 

  70. Sud S, Sud M, Friedrih J, et al. High-frequency ventilation versus conventional ventilation for treatment of acute lung injury and acute respiratory distress syndrome. Cochrane Database Systemic Review. 2013;28(2):CD004085.

    Google Scholar 

  71. Andersen FA, Guttormsen AB, Flaatten HK. High frequency oscillatory ventilation in adult patients with acute respiratory distress syndrome—a retrospective study. Acta Anaesthesiol Scand. 2002;46(9):1082–8.

    Article  CAS  PubMed  Google Scholar 

  72. Cartotto R. High frequency oscillatory ventilation in burn patients. Acta Anaesthesiol Scand. 2003;47(4):495; author reply 496.

    Article  PubMed  Google Scholar 

  73. Cartotto R. High-frequency oscillatory ventilation (HFOV) in trauma patients. J Trauma Injury Infect Crit Care. 2007;62(5):1315–6.

    Article  Google Scholar 

  74. Cartotto R, Cooper AB, Esmond JR, et al. Early clinical experience with high-frequency oscillatory ventilation for ARDS in adult burn patients. J Burn Care Rehabil. 2001;22(5):325–33.

    Article  CAS  PubMed  Google Scholar 

  75. Cartotto R, Ellis S, Gomez M, et al. High frequency oscillatory ventilation in burn patients with the acute respiratory distress syndrome. Burns. 2004;30(5):453–63.

    Article  PubMed  Google Scholar 

  76. Cartotto R, Ellis S, Smith T. Use of high-frequency oscillatory ventilation in burn patients. Crit Care Med. 2005;33(3 Suppl):S175–81.

    Article  PubMed  Google Scholar 

  77. Cartotto R, Walia G, Ellis S, et al. Oscillation after inhalation: high frequency oscillatory ventilation in burn patients with the acute respiratory distress syndrome and co-existing smoke inhalation injury. J Burn Care Res. 2009;30(1):119–27.

    Article  PubMed  Google Scholar 

  78. Cooper AB, Islur A, Gomez M, et al. Hypercapnic respiratory failure and partial upper airway obstruction during high frequency oscillatory ventilation in an adult burn patient. Can J Anaesth. 2002;49(7):724–8.

    Article  PubMed  Google Scholar 

  79. Greathouse ST, Hadad I, Zieger M, et al. High-frequency oscillatory ventilators in burn patients: experience of Riley Hospital for Children. J Burn Care Res. 2012;33(3):425–35.

    Article  PubMed  Google Scholar 

  80. Mehta S, Lapinsky SE, Hallett DC, et al. Prospective trial of high-frequency oscillation in adults with acute respiratory distress syndrome. Crit Care Med. 2001;29(7):1360–9.

    Article  CAS  PubMed  Google Scholar 

  81. Rowan CM, Cristea O, Greathouse ST, et al. Preemptive use of high-frequency oscillatory ventilation in pediatric burn patients. J Burn Care Res. 2013;34(2):237–42.

    Article  PubMed  Google Scholar 

  82. Walia G, Jada G, Cartotto R. Anesthesia and intraoperative high-frequency oscillatory ventilation during burn surgery. J Burn Care Res. 2011;32(1):118–23.

    Article  PubMed  Google Scholar 

  83. Wang SG, Guo GH, Fu ZH, et al. Comparison of conventional mandatory ventilation and high frequency oscillatory ventilation for treatment of acute lung injury induced by steam inhalation injury. Burns. 2006;32(8):951–6.

    Article  PubMed  Google Scholar 

  84. Dries DJ, Marini JJ. Airway pressure release ventilation. J Burn Care Res. 2009;30(6):929–36.

    PubMed  Google Scholar 

  85. Dries DJ. Key questions in ventilator management of the burn-injured patient (second of two parts). J Burn Care Res. 2009;30(2):211–20.

    Article  PubMed  Google Scholar 

  86. Peek GJ, Clemens F, Elbourne D, et al. CESAR: conventional ventilatory support vs extracorporeal membrane oxygenation for severe adult respiratory failure. BMC Health Serv Res. 2006;6:163.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Askegard-Giesmann JR, Besner GE, Fabia R, et al. Extracorporeal membrane oxygenation as a lifesaving modality in the treatment of pediatric patients with burns and respiratory failure. J Pediatr Surg. 2010;45(6):1330–5.

    Article  PubMed  Google Scholar 

  88. Asmussen S, Maybauer DM, Fraser JF, et al. Extracorporeal membrane oxygenation in burn and smoke inhalation injury. Burns. 2013;39(3):429–35.

    Article  PubMed  Google Scholar 

  89. Burke CR, Chan T, McMullan DM. Extracorporeal life support use in adult burn patients. J Burn Care Res. 2017;38(3):174–8.

    Article  PubMed  Google Scholar 

  90. Chou NK, Chen YS, Ko WJ, et al. Application of extracorporeal membrane oxygenation in adult burn patients. Artif Organs. 2001;25(8):622–6.

    Article  CAS  PubMed  Google Scholar 

  91. Goretsky MJ, Greenhalgh DG, Warden GD, et al. The use of extracorporeal life support in pediatric burn patients with respiratory failure. J Pediatr Surg. 1995;30(4):620–3.

    Article  CAS  PubMed  Google Scholar 

  92. Hilt T, Graves DF, Chernin JM, et al. Successful use of extracorporeal membrane oxygenation to treat severe respiratory failure in a pediatric patient with a scald injury. Crit Care Nurse. 1998;18(6):63–72.

    CAS  PubMed  Google Scholar 

  93. Kane TD, Greenhalgh DG, Warden GD, et al. Pediatric burn patients with respiratory failure: predictors of outcome with the use of extracorporeal life support. J Burn Care Rehabil. 1999;20(2):145–50.

    Article  CAS  PubMed  Google Scholar 

  94. Lessin MS, el-Eid SE, Klein MD, et al. Extracorporeal membrane oxygenation in pediatric respiratory failure secondary to smoke inhalation injury. J Pediatr Surg. 1996;31(9):1285–7.

    Article  CAS  PubMed  Google Scholar 

  95. Nelson J, Cairns B, Charles A. Early extracorporeal life support as rescue therapy for severe acute respiratory distress syndrome after inhalation injury. J Burn Care Res. 2009;30(6):1035–8.

    PubMed  Google Scholar 

  96. Nosanov LB, McLawhorn MM, Vigiola Cruz M, et al. A National Perspective on ECMO utilization use in patients with burn injury. J Burn Care Res. 2017;39(1):10–4.

    PubMed  Google Scholar 

  97. O’Toole G, Peek G, Jaffe W, et al. Extracorporeal membrane oxygenation in the treatment of inhalation injuries. Burns. 1998;24(6):562–5.

    Article  PubMed  Google Scholar 

  98. Ombrellaro M, Goldthorn JF, Harnar TJ, et al. Extracorporeal life support for the treatment of adult respiratory distress syndrome after burn injury. Surgery. 1994;115(4):523–6.

    CAS  PubMed  Google Scholar 

  99. Patton ML, Simone MR, Kraut JD, et al. Successful utilization of ECMO to treat an adult burn patient with ARDS. Burns. 1998;24(6):566–8.

    Article  CAS  PubMed  Google Scholar 

  100. Pierre EJ, Zwischenberger JB, Angel C, et al. Extracorporeal membrane oxygenation in the treatment of respiratory failure in pediatric patients with burns. J Burn Care Rehabil. 1998;19(2):131–4.

    Article  CAS  PubMed  Google Scholar 

  101. Soussi S, Gallais P, Kachatryan L, et al. Extracorporeal membrane oxygenation in burn patients with refractory acute respiratory distress syndrome leads to 28% 90-day survival. Intensive Care Med. 2016;42(11):1826–7.

    Article  PubMed  Google Scholar 

  102. Nayyar A, Charles AG, Hultman CS. Management of pulmonary failure after burn injury: from VDR to ECMO. Clin Plast Surg. 2017;44(3):513–20.

    Article  PubMed  Google Scholar 

  103. Jacob S, Zhu Y, Jonkam C, et al. Effect of bronchodilators on bronchial gland cell proliferation after inhalation and burn injury in sheep. J Burn Care Res. 2013;34(4):386–93.

    Article  PubMed  Google Scholar 

  104. Jonkam C, Zhu Y, Jacob S, et al. Assessment of combined muscarinic antagonist and fibrinolytic therapy for inhalation injury. J Burn Care Res. 2012;33(4):524–31.

    Article  PubMed  Google Scholar 

  105. Lopez E, Fujiwara O, Lima-Lopez F, et al. Nebulized epinephrine limits pulmonary vascular hyperpermeability to water and protein in ovine with burn and smoke inhalation injury. Crit Care Med. 2016;44(2):e89–96.

    Article  CAS  PubMed  Google Scholar 

  106. AC M, Rivero A, Ziad S, et al. Influence of nebulized unfractionated heparin and N-acetylcysteine in acute lung injury after smoke inhalation. J Burn Care Rehabil. 2009;30:249–56.

    Article  Google Scholar 

  107. Desai M, Mlcak R, Richardson J, et al. Reduction on mortality in pediatric patients with inhalation injury with aerosolized heparin/acetylcysteine therapy. J Burn Care Rehabil. 1998;19:210–2.

    Article  CAS  PubMed  Google Scholar 

  108. Holt J, Saffle J, Morris S. Use of inhaled heparin/N-acetylcysteine in inhalation injury: does it help? J Burn Care Res. 2008;29:192–5.

    Article  PubMed  Google Scholar 

  109. McIntire AM, Harris SA, Whitten JA, et al. Outcomes following the use of nebulized heparin for inhalation injury (HIHI Study). J Burn Care Res. 2017;38(1):45–52.

    Article  PubMed  Google Scholar 

  110. Miller AC, Elamin EM, Suffredini AF. Inhaled anticoagulation regimens for the treatment of smoke inhalation-associated acute lung injury: a systematic review. Crit Care Med. 2014;42(2):413–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Konukoglu D, Cetinkale O, Bulan R. Effects of N-acetylcysteine on lung glutathione levels in rats after burn injury. Burns. 1997;23(7–8):541–4.

    Article  CAS  PubMed  Google Scholar 

  112. Brown M, SDesai M, Traber L, et al. Dimethylsulfoxide with heparin in the treatment of smoke inhalation injury. J Burn Care Rehabil. 1988;9:22–5.

    Article  CAS  PubMed  Google Scholar 

  113. Sadowska A, Verbraecken J, D’arquennes K, et al. Role of N-acetylcysteine in the management of COPD. Ther Clin Risk Manag. 2006;2(1):3–18.

    Google Scholar 

  114. Younan D, Griffin R, Swain T, et al. A comparison of clinical characteristics and outcomes of ventilator-associated pneumonias among burn patients by diagnostic criteria set. Shock. 2017;48(6):624–8.

    Article  PubMed  Google Scholar 

  115. Santucci S, Gobara S, Santos S, et al. Infections in a burn intensive care unit: experience of seven years. J Hosp Infections. 2003;53:6–13.

    Article  CAS  Google Scholar 

  116. Wibbenmeyer L, Danks RR, Faucher LD, et al. Prospective analysis of resistance in a burn population. J Burn Care Res. 2006;27:152–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin N. Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foster, K.N. (2020). Respiratory Management in Burn Care. In: Jeschke, M., Kamolz, LP., Sjöberg, F., Wolf, S. (eds) Handbook of Burns Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-18940-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18940-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18939-6

  • Online ISBN: 978-3-030-18940-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics