Skip to main content

Phosphate-Solubilising Fungi and Their Potential Role in Sustainable Agriculture

  • Chapter
  • First Online:
Biofertilizers for Sustainable Agriculture and Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 55))

Abstract

Phosphate-solubilising fungi harness the phosphate available in the soil-plant systems and make it available to the plants. They solubilise or mineralise phosphate that is present in the sparingly soluble organic and inorganic form in the soil, thereby improving growth and yield of a wide variety of crops. Various mechanisms governing the plant growth promotion by phosphate solubilisation are being investigated. Development of an efficient management system to improve agricultural productivity is of current interest in agricultural biotechnology. Use of phosphate-solubilising fungi (PSF) as conventional phosphate fertilisers is a promising strategy to improve global demands of improved agricultural productivity, depletion of soil fertility, water pollution and accumulation of toxic elements. It provides an environmentally acceptable agro-technique for enhanced agricultural sustainability. Despite the significance of PSF in plant growth promotion, they are still to be replaced with conventional chemical fertilisers. This review mainly focuses on the fungi that can solubilise phosphorus and thus have the potential to be used as biofertilisers. The mechanism of phosphate solubilisation is being highlighted with its significance, thereby depicting the success of this technology. Finally, the agronomic effectiveness of PSF has been discussed, which concludes that this technology is ready for commercial exploitation in various regions worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany MT, Alawlaqi MM (2018) Molecular identification of thermohalotolerant A. terreus and its correlation in sustainable agriculture. Bioresources 13(4):8012–8023

    Article  CAS  Google Scholar 

  • Adnan M, Alshammari E, Ashraf SA et al (2018) Physiological and molecular characterization of biosurfactant producing endophytic fungi Xylaria regalis from the cones of Thuja plicata as a potent plant growth promoter with its potential application. Biomed Res Int. https://doi.org/10.1155/2018/7362148

    Article  CAS  Google Scholar 

  • Agnolucci M, Battini F, Cristani C et al (2015) Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fert Soils 51(3):379–389

    Article  CAS  Google Scholar 

  • Ahemad M (2015) Phosphate solubilising bacteria assisted phytoremediation of metalliferous soil : a review. Biotech 5:111–121

    Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum. Appl Environ Microbiol 65:2926–2933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anand K, Kumari B, Mallick MA (2016) Phosphate solubilizing microbes: an effective and alternative approach as bio-fertilizers. Int J Pharm Sci 8(2):37–40

    CAS  Google Scholar 

  • Asaf S, Hamayun M, Khan AL (2018) Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol Biochem 128:13–23

    Article  PubMed  CAS  Google Scholar 

  • Asea PEA, Kucey RMN, Stewart JWB (1988) Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol Biochem 20:459–464

    Article  CAS  Google Scholar 

  • Bashan Y, Puente ME, Rodriquea MN et al (1995) Survival of Azorhizobiumbrasilense in the bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61:1938–1945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Goswami MP, Bhattacharyya LH (2016) Perspective of beneficial microbes in agriculture under changing climatic scenario: a review. J Phytol 8:26–41

    Article  CAS  Google Scholar 

  • Bilal L, Asaf S, Hamayun M (2018) Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76(2):117–127

    Article  CAS  Google Scholar 

  • Borch K, Bouma TJ, Lynch JP (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ 22:425–431

    Article  CAS  Google Scholar 

  • Brown AE, Hamilton JTG (1993) Indole-3-ethanol produced by Zygorrhynchusmoelleri, and indole-3-acetic acid analogue with antifungal activity. Mycol Res 96:71–74

    Article  Google Scholar 

  • Chadha N, Prasad R, Varma A (2015) Plant promoting activities of fungal endophytes associated with tomato roots from central Himalaya, India and their interaction with Piriformosporaindica. Int J Pharm Bio Sci 6(1):333–343

    Google Scholar 

  • Chagas LFB, De Castro HG, Colonia BSO et al (2016) Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Braz J Bot 39(2):437–445

    Article  Google Scholar 

  • Chen CR, Condron LM, Davis MR et al (2003) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For Ecol Manag 117:539–557

    Article  Google Scholar 

  • Devi P, Packialakshmi N (2018) Screening of phosphate solubilizing fungi from Cardiospermum halicacabum roots and its bioactive compounds. Pharm Innov 6:290–296

    Google Scholar 

  • Dolatabad HK, Javan-Nikkhah M, Shier WT (2017) Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistaciavera. Mycol Prog 16(8):777–790

    Article  Google Scholar 

  • Droog F (1997) Plant glutathione S-transferases, a tale of theta and tau. J Plant Growth Regul 16(2):95–107

    Article  CAS  Google Scholar 

  • Efthymiou A, Jensen B, Jakobsen I (2018) The roles of mycorrhiza and Penicillium inoculants in phosphorus uptake by biochar-amended wheat. Soil Biol Biochem 127:168–177

    Article  CAS  Google Scholar 

  • Elias F, Woyessa D, Muleta D (2016) Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma Zone, Southwest Ethiopia. Int Microbiol. https://doi.org/10.1155/2016/5472601

    Article  CAS  Google Scholar 

  • Franca DV, Kupper KC, Magri MM (2017) Trichoderma spp. isolates with potential of phosphate solubilization and growth promotion in cherry tomato. Pesq Agropec Trop 47(4):360–368

    Article  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401

    Article  CAS  Google Scholar 

  • Gomez-Munoz B, Pittroff SM, de Neergaard A et al (2017) Penicillium bilaiae effects on maize growth and P uptake from soil and localized sewage sludge in a rhizobox experiment. Biol Fertl Soils 53(1):23–35

    Article  CAS  Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic 12(2):185–193

    Article  Google Scholar 

  • Hahn K, Strittmatter G (1994) Pathogen-defence gene prp1–1 from potato encodes an auxin-responsive glutathione S-transferase. Eur J Biochem 226(2):619–626

    Article  CAS  PubMed  Google Scholar 

  • Hamill JD (1993) Alterations in auxin and cytokinin metabolism of higher plants due to expression of specific genes from pathogenic bacteria: a review. Aust J Plant Physiol 20:405–423

    CAS  Google Scholar 

  • Jain R, Saxena J, Sharma V (2012) Solubilization of inorganic phosphates by Aspergillus awamori S19 isolated from rhizosphere soil of a semi-arid region. Ann Microbiol 62(2):725–735

    Article  CAS  Google Scholar 

  • Karmakar P, Sharma D, Das P et al (2018) Phosphate solubilizing capacity and siderophore production by Arthroderma cuniculi Dawson isolated from rhizospheric soil. Res J Life Sci Bioinform Pharmac Chem Sci 4(3):330–336

    CAS  Google Scholar 

  • Khan MR, Khan SM (2001) Bio management of Fusarium wilt of tomato by the soil application of certain phosphate-solubilizing microorganisms. Int J Pest Manage 47:227–231

    Article  Google Scholar 

  • Khan MR, Khan SM (2002) Effect of root-dip treatment with certain phosphate-solubilizing microorganisms on the Fusarium wilt of tomato. Bioresour Technol 85:213–215

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27(1):29–43

    Article  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS et al (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58

    Google Scholar 

  • Khan MS, Zaidi A, Ahemad M et al (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch Agron Soil Sci 56(1):73–98

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Kim YH (2011) Ameliorative symbiosis of endophyte (Penicillium funiculosumLHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49(8):852–861

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Ullah I, Waqas M et al (2018) Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean. Symbiosis 77:9–21

    Article  CAS  Google Scholar 

  • Krishnaraj PU, Khanuja SPS, Sadashivam KV (1998) Mineral phosphate solubilization (MPS) and mps genes-components in eco-friendly P fertilization. In: Indo US workshop on application of biotechnology for clean environment and energy. National Institute of Advanced Studies, Bangalore, p 27

    Google Scholar 

  • Kucey RMN (1983) Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63(4):671–678

    Article  CAS  Google Scholar 

  • Lemanceau P, Alabouvette C, Meyer JM (1986) Production of fusarinine and iron assimilation by pathogenic and non-pathogenic Fusarium. In: Iron, siderophores, and plant diseases. Springer, Boston, MA, pp 251–259

    Chapter  Google Scholar 

  • Li RX, Cai F, Pang G et al (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One:0130081. https://doi.org/10.1371/journal.pone

  • Li Z, Bai T, Dai L (2016) A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicumand Aspergillus niger. Sci Rep 6:25313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maliha R, Samina K, Najma A (2004) Organic acid production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Malviya J, Singh K, Joshi V (2011) Effect of phosphate solubilizing fungi on growth and nutrient uptake of ground nut (Arachishypogaea) plants. Adv Biores 2:110–113

    CAS  Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26(4):267–286

    Article  CAS  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    Article  CAS  Google Scholar 

  • Mukherjee PK, Hurley JF, Taylor JT et al (2018) Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochem Biophys Res Comm. https://doi.org/10.1016/j.bbrc.2018.09.170

    Article  CAS  PubMed  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling, Soil Biology. Springer, Heidelberg, pp 251–244

    Google Scholar 

  • Nath R, Sharma GD, Barooah M (2015) Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis) shrubs of Assam, India. Appl Ecol Environ Res 13:877–891

    Google Scholar 

  • Nelofer R, Syed Q, Nadeem M et al (2016) isolation of phosphorus-solubilizing fungus from soil to supplement biofertilizer. Arab J Sc Eng 41(6):2131–2138

    Article  CAS  Google Scholar 

  • Nenwani V, Doshi P, Saha T et al (2010) Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J Yeast Fungal Res 1(1):9–14

    CAS  Google Scholar 

  • Ngwene B, Boukail S, Söllner L (2016) Phosphate utilization by the fungal root endophyte Piriformosporaindica. Plant Soil 405(1–2):231–241

    Article  CAS  Google Scholar 

  • Nutaratat P, Srisuk N, Arunrattiyakorn P (2014) Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118(8):683–694

    Article  CAS  PubMed  Google Scholar 

  • Omar SA (1997) The role of rock-phosphate-solubilizing fungi and vesicular–arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14(2):211–218

    Article  Google Scholar 

  • Osorio NW, Habte M (2013) Synergistic effect of a phosphate-solubilizing fungus and an arbuscular mycorrhizal fungus on leucaena seedlings in an Oxisol fertilized with rock phosphate. Botany 91(4):274–281

    Article  CAS  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S et al (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandya ND, Desai PV, Jadhav HP (2018) Plant growth promoting potential of Aspergillus sp. NPF7, isolated from wheat rhizosphere in South Gujarat, India. Environ Sustain. https://doi.org/10.1007/s42398-018-0025-z

    Article  Google Scholar 

  • Pany S, Mishra S, Gupta N (2018) Evaluation of native rhizospheric and phosphate solubilising microbes for growth and development of Pongamiapinnata under nursery condition. Adv Biores 9(1):92–101

    CAS  Google Scholar 

  • Pozo M, Azcon C, Barea J et al (1998) Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophtoraparasitica. J Exp Bot 49:1729–1739

    Article  CAS  Google Scholar 

  • Prabhu V, Biolchini PF, Boyer GL (1996) Detection and identification of ferricrocin produced by ectendomycorrhizal fungi in the genus Wilcoxina. Biometals 9:229–234

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Khan AL, Kang SM (2015) A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides RK01 and Humicola sp. KNU01 under salt stress. Ann Microbiol 65(1):585–593

    Article  CAS  Google Scholar 

  • Resende MI, Jakoby IC, dos Santos LC et al (2014) Phosphate solubilization and phytohormone production by endophytic and rhizosphere Trichoderma isolates of guanandi (Calophyllumbrasiliense Cambess). Afr J Microbiol Res 8(27):2616–2623

    Article  CAS  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, VVSR G, Grace PR (eds) Soil biota: management of sustainable farming systems. CSIRO, Melbourne

    Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorous from phytate. Plant J 25:641–649

    Article  CAS  PubMed  Google Scholar 

  • Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01785

  • Rinu K, Sati P, Pandey A (2014) Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54(5):408–417

    Article  CAS  PubMed  Google Scholar 

  • Rojas YD, Arias RM, Ortiz RM (2018) Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants. Agrofor Syst 93(3):961–972

    Google Scholar 

  • Rudolph W (1922) Influence of S oxidation upon growth of soybeans and its effect on bacterial flora of soil. Soil Sci l4:247–263

    Google Scholar 

  • Sahoo HR, Gupta N (2017) Impact of three phosphate solubilizing species of Penicillium on growth of Piper longum L. under inoculated condition. Trop Plant Res 4(3):456–460

    Article  Google Scholar 

  • Sarbadhikary SB, Mandal NC (2018) Elevation of plant growth parameters in two solanaceous crops with the application of endophytic fungus. Ind J Agric Res 52(4):424–428

    Google Scholar 

  • Satyaprakash M, Nikitha T, Reddi EUB et al (2017) Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int J Curr Microbiol Appl Sci 6:2133–2144

    Article  CAS  Google Scholar 

  • Scervino JM, Mesa MP, Della Mónica I (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fert Soils 46(7):755–763

    Article  CAS  Google Scholar 

  • Scheublin TR, Sanders IR, Keel C (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4(6):752

    Article  PubMed  Google Scholar 

  • Sharma S, Kumar V, Tripathi RB (2011) Isolation of phosphate solubilizing microorganism (PSMs) From Soil. J Microbiol Biotech Res 1(2):90–95

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013a) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2(1):587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013b) Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:1–14

    Article  CAS  Google Scholar 

  • Shin D, Kim J, Kim BS et al (2015) Use of phosphate solubilizing bacteria to leach rare earth elements from monazite-bearing ore. Minerals 5:189–202

    Article  CAS  Google Scholar 

  • Sims JT, Pierzynski GM (2005) Chemistry of phosphorus in soil. In: Tabatabai AM, Sparks DL (eds) Chemical processes in soil. SSSA, Madison, pp 151–192

    Google Scholar 

  • Singh H, Reddy MS (2011) Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur J Soil Biol 47(1):30–34

    Article  CAS  Google Scholar 

  • Steiner F, Lana MC, Zoz T (2016) Phosphate solubilising fungi enhance the growth and phosphorous uptake of sorghum plants. RevistaBrasileira d Milho e Sorgo 15(1):30–38

    Article  Google Scholar 

  • Suri VK, Choudhary AK, Chander G et al (2011) Improving phosphorus use through co-inoculation of vesicular arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria in maize in an acidic Alfisol. Commun Soil Sci Plant Anal 42(18):2265–2273

    Article  CAS  Google Scholar 

  • Swaby R, Sperber JI (1958) Phosphate dissolving microorganisms in the rhizosphere of legume, nutrition of legumes; Proc Univ Nottingham 5Th Easter Sch Agricul Sci (CSIRO Adelaide). Soils Fertil 286:289–294

    Google Scholar 

  • Taiwo LB, Oso BA (1997) The influence of some pesticides on soil microbial flora in relation to changes in nutrient level, rock phosphate solubilization and P release under laboratory conditions. Agric Ecosyst Environ 65:59–68

    Article  CAS  Google Scholar 

  • Tak HI, Ahmad F, Babalola OO et al (2012) Growth, photosynthesis and yield of chickpea as influenced by urban wastewater and different levels of phosphorus. Int J Plant Res 2:6–13

    Article  Google Scholar 

  • Tallapragada P, Seshachala U (2012) Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India. Turk J Biol 36(1):25–35

    CAS  Google Scholar 

  • Thakur D, Kaushal R, Shyam V (2014) Phosphate solubilising microorganisms: role in phosphorus nutrition of crop plants-a review. Agric Rev 35(3):159–171

    Article  Google Scholar 

  • Van Elsas JD, Van Overbeek LS, Fouchier R (1991) A specific marker pat for studying the fate of introduced bacteria and their DNA in soil using a combination of detection techniques. Plant Soil 138:49–60

    Article  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71(2):137–144

    Article  CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Lopez A et al (2015) Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol 99(12):4983–4996

    Article  CAS  PubMed  Google Scholar 

  • Walia A, Guleria S, Chauhan A et al (2017) Endophytic bacteria: role in phosphate solubilization. In: Maheshwari D, Annapurna K (eds) Endophytes: crop productivity and protection, vol 16. Springer, Cham, pp 61–93

    Chapter  Google Scholar 

  • Whitelaw MA (1999) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Article  Google Scholar 

  • Williamson LC, Ribrioux SPCP, Fitter AH (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkelmann G (1991) Importance of siderophores in fungal growth, sporulation and spore germination. In: Hawksworth DL (ed) Frontiers in mycology. CAB International, Wallingford, pp 49–65

    Google Scholar 

  • Winkelmann G (2017) A search for glomuferrin: a potential siderophore of arbuscular mycorrhizal fungi of the genus Glomus|. BioMetals 30(4):559–564

    Article  CAS  PubMed  Google Scholar 

  • Wu H (2005) Identification and characterization of a novel biotin synthesis gene in Saccharomyces cerevisiae. Appl Environ Microbiol 11:6845–6855

    Article  CAS  Google Scholar 

  • Wu M, Wei Q, Xu L et al (2018) Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant Soil 432(1–2):333–344

    Article  CAS  Google Scholar 

  • Yin Z, Fan B, Roberts DP et al (2017) Enhancement of maize growth and alteration of the rhizosphere microbial community by phosphate-solubilizing fungus Aspergillus aculeatus P93. J Agric Biotechnol 2(1):1–10

    Google Scholar 

  • Yousefi AA, Khavazi K, Moezi AA et al (2011) Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Appl Sci J 15(9):1310–1318

    CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M et al (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS et al (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 23–50

    Chapter  Google Scholar 

  • Zhang H, Wu X, Li G et al (2011) Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol Fertil Soils 47(5):543–554

    Article  CAS  Google Scholar 

  • Zhang L, Feng G, Declerck S (2018) Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J 12:2339–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Jia H, Ge X et al (2018) Effects of vanillin on the community structures and abundances of Fusarium and Trichoderma spp. in cucumber seedling rhizosphere. J Plant Interact 13(1):45–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaul, S., Sharma, S., Apra, Dhar, M.K. (2019). Phosphate-Solubilising Fungi and Their Potential Role in Sustainable Agriculture. In: Giri, B., Prasad, R., Wu, QS., Varma, A. (eds) Biofertilizers for Sustainable Agriculture and Environment . Soil Biology, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_17

Download citation

Publish with us

Policies and ethics