Skip to main content

Bumble Bees and Entomovectoring in Open Field Conditions

  • Chapter
  • First Online:
Book cover Entomovectoring for Precision Biocontrol and Enhanced Pollination of Crops

Abstract

This chapter describes the efficiency of bumble bees as biocontrol agents and also, which factors should be taken into account when, using them. Bumble bee mediated biocontrol of grey mould (Botrytis cinerea Pers.:Fr.) decreased the infection up to three times in open field strawberry. The presence of other flower visitors foraging on strawberry aid the dissemination of BCAs. The open conditions set some obstacles, which must be overcome. The flowering stage of target crop and availability of alternative food sources affect the bumble bee foraging. Knowing the bumble bee foraging behaviour helps to find out right solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrenfeldt E, Klatt B, Arildsen J, Trandem N, Andersson G, Tscharntke T, Smith H, Sigsgaard L (2015) Pollinator communities in strawberry crops-variation at multiple spatial scales. Bull Entomol Res 105:497–506

    CAS  PubMed  Google Scholar 

  • Alford DV (1975) Bumblebees. Davis-Poynter, London

    Google Scholar 

  • Ayasse M, Jarau S (2014) Chemical ecology of bumble bees. Annu Rev Entomol 59:299–319

    CAS  PubMed  Google Scholar 

  • Batra LR, Batba SWT, Bohart GE (1973) The mycoflora of domesticated and wild bees (Apoidea). Mycopathol Mycol Appl 49:13–44

    Google Scholar 

  • Benton T (2006) Bumblebees. Collins New Naturalist Series, London

    Google Scholar 

  • Bertazzini M, Forlani G (2016) Intraspecific variability of floral nectar volume and composition in rapeseed (Brassica napus L. var. oleifera). Front Plant Sci 7:288

    PubMed  PubMed Central  Google Scholar 

  • Cartar RV (2004) Resource-tracking by bumble bees: responses to plant-level differences in quality. Ecology 85:2764–2771

    Google Scholar 

  • Carvell C, Westrich P, Meek WR, Pywell RF, Nowakowski M (2006) Assessing the value of annual and perennial forage mixtures for bumblebees by direct observation and pollen analysis. Apidologie 37:326–340

    Google Scholar 

  • Cota LV, Maffia LA, Mizubuti ESG, Macedo PEF (2009) Biological control by Clonostachys rosea as a key component in the integrated management of strawberry gray mold. Biol Control 50:222–230

    Google Scholar 

  • Dedej S, Delaplane KS, Scherm H (2004) Effectiveness of honey bees in delivering the biocontrol agent Bacillus subtilis to blueberry flowers to suppress mummy berry disease. Biol Control 31:422–427

    Google Scholar 

  • Dornhaus A, Chittka L (1999) Insect behaviour: evolutionary origins of bee dances. Nature 401:38

    CAS  Google Scholar 

  • Dornhaus A, Chittka L (2001) Food alert in bumblebees (Bombus terrestris): possible mechanisms and evolutionary implications. Behav Ecol Sociobiol 50:570–576

    Google Scholar 

  • Dukas R (1995) Transfer and interference in bumblebee learning. Anim Behav 49:1481–1490

    Google Scholar 

  • Escande AR, Laich FS, Pedraza MV (2002) Field testing of honeybee-dispersed Trichoderma spp. to manage sunflower head rot (Sclerotinia sclerotiorum). Plant Pathol 51:346–351

    Google Scholar 

  • Evenhuis A, Wilms JAM (2009) Designing strategies to control grey mould in strawberry cultivation using decision support systems. Acta Hortic 842:247–250

    Google Scholar 

  • Free JB (1970) The flower constancy of bumblebees. J Anim Ecol 39:395–402

    Google Scholar 

  • Free JB (1993) Insect Pollination of Crops, 2nd edn. Academic, London

    Google Scholar 

  • Free JB, Williams IH (1972) Hoarding by honey bees (Apis mellifera L.). Anim Behav 20:327–334

    Google Scholar 

  • Gegear RJ, Thomson JD (2004) Does the flower constancy of bumble bees reflect foraging economics? Ethology 110:793–805

    Google Scholar 

  • Goulson D, Stout JC (2001) Homing ability of the bumblebee Bombus terrestris (Hymenoptera: Apidae). Apidologie 32:105–112

    Google Scholar 

  • Goulson D, Hughes WOH, Derwent LC, Stout JC (2002) Colony growth of the bumblebee, Bombus terrestris, in improved and conventional agricultural and suburban habitats. Oecologia 130:267–273

    CAS  PubMed  Google Scholar 

  • Goulson D, Lye GC, Darvill B (2008) Diet breadth, coexistence and rarity in bumblebees. Biodivers Conserv 17:3269–3288

    Google Scholar 

  • Hagen M, Wikelski M, Kissling WD (2011) Space use of bumblebees (Bombus spp.) revealed by radio-tracking. PLoS One 6(5):e19997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich B (1979) Bumblebee economics. Harvard University Press, Cambridge

    Google Scholar 

  • Karise R, Mänd M, Ivask M, Koskor E, Bender A (2006) The effect of pollen amount and its caloric value in hybrid lucerne (Medicago x varia) on its attractiveness to bumble bees (Bombus terrestris). Agron Res 4:211–2016

    Google Scholar 

  • Karise R, Dreyersdorff G, Jahani M, Veromann E, Runno-Paurson E, Kaart T, Smagghe G, Mänd M (2016a) Reliability of the entomovector technology using Prestop-Mix and Bombus terrestris L. as a fungal disease biocontrol method in open field. Sci Rep 6:31650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karise R, Muljar R, Smagghe G, Kaart T, Kuusik A, Dreyersdorff G, Williams IH, Mänd M (2016b) Sublethal effects of kaolin and the biopesticides Prestop-Mix and BotaniGard on metabolic rate, water loss and longevity in bumble bees (Bombus terrestris). J Pest Sci 89:171–178

    Google Scholar 

  • Karise R, Raimets R, Dreyersdorff G, Mänd M (2018) Using respiratory physiology techniques in assessments of pesticide effects on bees. In: Oomen P, Pistorius J (Ed.) Hazards of pesticides to bees: 13th International Symposium of the ICP-PR Bee Protection Group; October 18–20 (2017) València (Spain) – Proceedings, Julius Kühn-Institut, p 61–66

    Google Scholar 

  • Kevan PG, Al-Mazra’awi MS, Sutton JC, Tam L, Boland G, Broadbent B, Thompson SV, Brewer GJ (2003) Using pollinators to deliver biological control agents against crop pests. In: Downer RA, Mueninghoff JC, Volgas GC (eds) Pesticide formulations and delivery systems: meeting the challenges of the current crop protection industry. American Society Testing and Materials, W Conshohocken, pp 148–153

    Google Scholar 

  • Klatt BK, Holzschuh A, Westphal C, Clough Y, Smit I, Pawelzik E, Tscharntke T (2014a) Bee pollination improves crop quality, shelf life and commercial value. Proc R Soc B 281:20132440

    PubMed  Google Scholar 

  • Klatt BK, Klaus F, Westphal C, Tscharntke T (2014b) Enhancing crop shelf life with pollination. Agric Food Secur 3:14

    Google Scholar 

  • Klein A-M‚ Vaissiere BE‚ Cane JH‚ Steffan-Dewenter I‚ Cunningham SA‚ Kremen C‚ Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B Biol Sci 274(1608): 303–313

    Google Scholar 

  • Koskor E, Muljar R, Drenkhan K, Karise R, Bender A, Viik E, Luik A, Mänd M (2009) The chronic effect of the botanical insecticide Neem EC on the pollen forage of the bumble bee Bombus terrestris L. Agron Res 7:341–346

    Google Scholar 

  • Kovach J, Petzoldt R, Harman GE (2000) Use of honeybees and bumble bees to disseminate Trichoderma harzianum 1295–22 to strawberries for Botrytis control. Biol Control 18:235–242

    Google Scholar 

  • Maccagnani B, Giacomello F, Fanti M, Gobbin D, Maini S, Angeli G (2009) Apis mellifera and Osmia cornuta as carriers for the secondary spread of Bacillus subtilis on apple flowers. BioControl 54:123–133

    Google Scholar 

  • Makino TT, Sakai S (2007) Experience changes pollinator responses to floral display size: from size-based to reward-based foraging. Funct Ecol 21:854–863

    Google Scholar 

  • Makino TT, Ohashi K, Sakai S (2007) How do floral display size and density of surrounding flowers influence the likelihood of bumble bee revisitation to a plant? Funct Ecol 21:87–95

    Google Scholar 

  • Mänd M, Williams IH, Viik E, Karise R (2010) Oilseed rape, bees and integrated pest management. In: Williams IH (ed) Biocontrol-based integrated management of oilseed rape Pests. Springer, London, pp 357–379

    Google Scholar 

  • Mommaerts V, Put K, Vandeven J, Jans K, Sterk G, Hoffmann L, Smagghe G (2010) Development of a new dispenser for microbiological control agents and evaluation of dissemination by bumblebees in greenhouse strawberries. Pest Manag Sci 66:1199–1207

    CAS  PubMed  Google Scholar 

  • Mommaerts V, Put K, Smagghe G (2011) Bombus terrestris as pollinator-and-vector to suppress Botrytis cinerea in greenhouse strawberry. Pest Manag Sci 67:1069–1075

    CAS  PubMed  Google Scholar 

  • Newsholme EA, Crabtree B, Higgins SJ, Thornton SD, Start C (1972) The activities of fructose diphosphatase in flight muscles from the bumble-bee and the role of this enzyme in heat generation. Biochem J 128:89–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolson SW, Nepi M (2005) Dilute nectar in dry atmospheres: nectar secretion patterns in Aloe castanea (Asphodelaceae). Int J Plant Sci 166:227–233

    Google Scholar 

  • Nuclo RL, Johnson KB, Stockwell VO, Sugar D (1998) Secondary colonization of pear blossoms by two bacterial antagonists of the fire blight pathogen. Plant Dis 82:661–668

    CAS  PubMed  Google Scholar 

  • Osborne JL, Williams IH (2001) Site constancy of bumble bees in an experimentally patchy habitat. Agric Ecosyst Environ 83:129–141

    Google Scholar 

  • Osborne JL, Martin AP, Carreck NL, Swain JL, Knight ME, Goulson D, Hale RJ, Sanderson RA (2008) Bumblebee flight distances in relation to the forage landscape. J Anim Ecol 77:406–415

    PubMed  Google Scholar 

  • Parmentier L, Meeus I, Cheroutre L, Mommaerts V, Louwye S, Smagghe G (2014) Commercial bumblebee hives to assess an anthropogenic environment for pollinator support: a case study in the region of Ghent (Belgium). Environ Monit Assess 186:2357–2367

    CAS  PubMed  Google Scholar 

  • Peat J, Darvill B, Ellis J, Goulson D (2005) Effects of climate on intra- and interspecific size variation in bumble-bees. Funct Ecol 19:145–151

    Google Scholar 

  • Peng G, Sutton JC, Kevan PG (1992) Effectiveness of honey bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea. Can J Plant Pathol 14:117–129

    Google Scholar 

  • Perkins-Veazie P (1995) Growth and ripening of strawberry fruit. In: Janick J (ed) Horticultural reviews, vol 17. Wiley, Oxford, pp 267–297

    Google Scholar 

  • Reeh KW, Hillier NK, Cutler GC (2014) Potential of bumble bees as bio-vectors of Clonostachys rosea for Botrytis blight management in lowbush blueberry. J Pest Sci 87:543–550

    Google Scholar 

  • Renner MA, Nieh JC (2008) Bumble bee olfactory information flow and contact-based foraging activation. Insect Soc 55:417–424

    Google Scholar 

  • Shackleton K, Balfour NJ, Al Toufailia H, Gaioski R, de Matos Barbosa M, Silva CA de S, Bento JMS, Alves DA, Ratnieks FLW (2016) Quality versus quantity: foraging decisions in the honeybee (Apis mellifera scutellata) feeding on wildflower nectar and fruit juice. Ecol Evol 6:7156–7165

    PubMed  PubMed Central  Google Scholar 

  • Somme L, Vanderplanck M, Michez D, Lombaerde I, Moerman R, Wathelet B, Wattiez R, Lognay G, Jacquemart A-L (2014) Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie 46:92–106

    Google Scholar 

  • Teräs I (1985) Food plants and flower visits of bumblebees (Bombus: Hymenoptera, Apidae) in southern Finland. Acta Zool Fenn 179

    Google Scholar 

  • Tuohimetsä S, Hietaranta T, Uosukainen M, Kukkonen S, Karhu S (2014) Fruit development in artificially self- and cross-pollinated strawberries (Fragaria × ananassa) and raspberries (Rubus idaeus). Acta Agric Scand Sect B Soil Plant Sci 64:408–415

    Google Scholar 

  • Verdera: Safety Data. Available at: http://verdera.fi/en/products/horticulture/prestop-mix/safety-data/. Accessed 7 Dec 2015

  • Viik E, Mänd M, Karise R, Lääniste P, Williams IH, Luik A (2012) The impact of foliar fertilization on the number of bees (Apoidea) on spring oilseed rape. Žemdirbyste–Agriculture 99:41–46

    Google Scholar 

  • Walther-Hellwig K, Frankl R (2000) Foraging distances of Bombus muscorum, Bombus lapidarius and Bombus terrestris (Hymenoptera, Apidae). J Insect Behav 13:239–246

    Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2006) Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia 149:289–300

    PubMed  Google Scholar 

  • Wilcox WF (1994) Relationship between strawberry gray mold incidence, environmental variables, and fungicide applications during different periods of the fruiting season. Phytopathology 84:264–270

    Google Scholar 

  • Wolf S, Moritz RFA (2008) Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie 39:419–427

    Google Scholar 

  • Yu H, Sutton JC (1997) Effectiveness of bumblebees and honeybees for delivering inoculum of Gliocladium roseum to raspberry flowers to control. Biol Control 10:113–122

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Riin Muljar, Gerit Dreyersdorff, Anna Bontšutšnaja and other students for their assistance throughout the field work periods. This research was supported by the EU-ERANET activity of the CORE Organic Programme II project BICOPOLL, the Institutional Research Funding (IUT36-2) of the Estonian Ministry of Education and the Department Agriculture, and Fisheries of the Flemish government and the Flemish Research Organization IWT-Flanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marika Mänd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mänd, M., Karise, R., Smagghe, G. (2020). Bumble Bees and Entomovectoring in Open Field Conditions. In: Smagghe, G., Boecking, O., Maccagnani, B., Mänd, M., Kevan, P. (eds) Entomovectoring for Precision Biocontrol and Enhanced Pollination of Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-18917-4_5

Download citation

Publish with us

Policies and ethics