Skip to main content

Agroecosystem Design Supports the Activity of Pollinator Networks

  • Chapter
  • First Online:

Abstract

The ecological compensation areas are hedges, woods, field margins, uncultivated land and the wild nectariferous/polliniferous plants that form the vegetable “non-productive” component within the agro-ecosystems. In intensive agriculture, these components have been described for many years as unhelpful in the productive systems. More recently a different approach, which considers the complex interactions between the crop and the non-productive areas has opened new perspectives. Many studies carried out at the farm-scale and at the landscape-scale resulted in the identification of many non-crop plants that play an important role in the conservation of both pollinators and beneficial arthropods. Knowledge about their role in the multiplication, life cycle and population dynamics of pollinators is crucial in order to select weeds, trees and shrubs for restoring degraded agroecosystems and for the development of wild pollinators conservation programs, or for the selective enhancement of certain pollinator species. Synchronizing pollinators’ presence with the need of pollination of a specific crop requires the management of ecological compensation areas. A crucial role to realize synchronization is represented by non-crop plants, which may allow the nesting and multiplication of the most efficient pollinators of the target crop at the proper period.

Bettina Maccagnani - Scientific advisor for the Automobili Lamborghini project “Environmental Biomonitoring with Honey Bees: Science and Education”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alanen E-L, Hyvönen T, Lindgren S, Härmä O, Kuussaari M (2011) Differential responses of bumble bees and diurnal Lepidoptera to vegetation succession in long-term set-aside. J Appl Ecol 48:1251–1259

    Article  Google Scholar 

  • Altieri MA, Letourneau DK (1982) Vegetation management and biological control in agroecosystems. Crop Prot 1:405–430

    Article  Google Scholar 

  • Amy SR, Heard MS, Hartley SE, George CT, Pywell RF, Staley JT (2015) Hedgerow rejuvenation management affects invertebrate communities through changes to habitat structure. Basic Appl Ecol 16:443–451

    Article  Google Scholar 

  • Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586

    Article  Google Scholar 

  • Bailey S, Requier F, Nusillard B, Roberts SPM, Potts SG, Bouget C (2014) Distance from forest edge affects bee pollinators in oilseed rape fields. Ecol Evol 4:370–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett AF, Radford JQ, Haslem A (2006) Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv 133:250–264

    Article  Google Scholar 

  • Biesmeijer JC, Roberts SP, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  CAS  PubMed  Google Scholar 

  • Blaauw BR, Isaacs R (2014) Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J Appl Ecol 51:890–898

    Article  Google Scholar 

  • Boecking O, Kubersky U (2007) Development and management of adequate pollinators (Apoidea) in ecological berry production (strawberry and high bush blueberries) to optimize the crop yield and quality assurance. http://orgprints.org/15124/

  • Boriani L, Ferrari R, Burgio G, Nicoli G, Pozzati M, Cavazzuti C (1998) Il ruolo delle siepi nell’ecologia del campo coltivato. II. Ulteriori indagini sui Coccinellidi predatori di afidi. Informatore Fitopatologico 48(5):51–58

    Google Scholar 

  • Burgio G (2007) The role of ecological compensation areas in conservation biological control WUR Wageningen UR. Promotor(en): Lenteren, Prof dr J.C. van. - [S.l.] : [s.n.], 2007 pp 154

    Google Scholar 

  • Burgio G, Ferrari R, Pozzati M, Boriani L (2004) The role of ecological compensation areas on predator populations: an analysis on biodiversity and phenology of Coccinellidae (Coleoptera) on non-crop plants within hedgerows in Northern Italy. Bull Insectol 57:1–10

    Google Scholar 

  • Burgio G, Ferrari R, Boriani L, Pozzati M, van Lenteren J (2006) The role of ecological infrastructures on Coccinellidae (Coleoptera) and other predators in weedy field margins within Northern Italy agroecosystems. Bull Insectol 59:5–67

    Google Scholar 

  • Buri P, Humbert JY, Arlettaz R (2014) Promoting pollinating insects in intensive agricultural matrices: field-scale experimental manipulation of Hay-meadow mowing regimes and its effects on bees. PLoS One 9:e85635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carvalheiro LG, Seymour CL, Nicolson SW, Veldtman R (2012) Creating patches of native flowers facilitates crop pollination in large agricultural fields: mango as a case study. J Appl Ecol 49:1373–1383

    Article  Google Scholar 

  • Carvell C, Meek WR, Pywell RF, Goulson D, Nowakowski M (2007) Comparing the efficacy of Agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. J Appl Ecol 44:29–40

    Article  Google Scholar 

  • Diekötter T, Billeter R, Crist TO (2008) Effects of landscape connectivity on the spatial distribution of insect diversity in agricultural mosaic landscapes. Basic Appl Ecol 9:298–307

    Article  Google Scholar 

  • Diekötter T, Kadoya T, Peter F, Wolters V, Jauker F (2010) Oilseed rape crops distort plant–pollinator interactions. J Appl Ecol 47:209–214

    Article  Google Scholar 

  • European Commission (2016) Land cover, land use. https://ec.europa.eu/agriculture/sites/agriculture/files/statistics/facts-figures/land-cover-use.pdf

    Google Scholar 

  • Fabian Y, Sandau N, Bruggisser OT, Aebi A, Kehrli P, Rohr RP, Naisbit RE, Bersier L (2013) The importance of landscape and spatial structure for hymenopteran-based food webs in an agro-ecosystem. J Anim Ecol 82:1203–1214

    Article  PubMed  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA, Carvalheiro LG, Chacoff NP, Dudenhoffer JH, Greenleaf SS, Holzschuh A, Isaacs R, Krewenka K, Mandelik Y, Mayfield MM, Morandin LA, Potts SG, Ricketts TH, Szentgyorgyi H, Viana BF, Westphal C, Winfree R, Klein AM (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14:1062–1072

    Article  PubMed  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhöffer JH, Freitas BM, Ghazoul J, Greenleaf S, Hipólito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka KM, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Ricketts TH, Rundlöf M, Seymour CI, Schüepp C, Szentgyörgyi H, Taki H, Tscharntke T, Vergara CH, Viana BFC, Wanger TC, Westphal C, Williams N, Klein AM (2013) Wild pollinators enhance fruit set of crops worldwide. Science 339:1608–1611

    Article  CAS  PubMed  Google Scholar 

  • Garratt MPD, Senapathi D, Coston DJ, Mortimer SR, Potts SG (2017) The benefits of hedgerows for pollinators and natural enemies depends on hedge quality and landscape context. Agric Ecosyst Environ 247:363–370

    Article  Google Scholar 

  • Haaland C, Bersier LF (2011) What can sown wildflower strips contribute to butterfly conservation?: an example from a Swiss lowland agricultural landscape. J Insect Conserv 15:301–309

    Article  Google Scholar 

  • Haenke S, Kovács-Hostyánszki A, Fründ J, Batáry P, Jauker B, Tscharntke T, Holzschuh A (2014) Landscape configuration of crops and hedgerows drives local syrphid fly abundance. J Appl Ecol 51:505–513

    Article  Google Scholar 

  • Hanley ME, Franco M, Dean CE, Franklin EL, Harris HR, Haynes AG, Rapson SR, Rowse G, Thomas KC, Waterhouse BR, Knight ME (2011) Increased bumblebee abundance along the margins of a mass flowering crop: evidence for pollinator spill-over. Oikos 120:1618–1624

    Article  Google Scholar 

  • Hendrickx F, Maelfait JP, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes: agricultural factors and arthropod biodiversity. J Appl Ecol 44:340–351

    Article  Google Scholar 

  • Holland JM, Bianchi FJJA, Entling MH, Moonen AC, Smith BM, Jeanneret P (2016) Structure, function and management of seminatural habitats for conservation biological control: a review of European studies. Pest Manag Sci 72:1638–1651

    Article  CAS  PubMed  Google Scholar 

  • Holland JM, Douma J, Crowley L, James L, Kor L, Stevenson DRW, Smith BM (2017) Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review. Agron Sustain Dev 37:31

    Article  Google Scholar 

  • Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2011) Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proc R Soc B-Biol Sci 278:3444–3451

    Article  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kells AR, Holland JM, Goulson D (2001) The value of uncropped field margins for foraging bumble bees. J Insect Conserv 5:283–291

    Article  Google Scholar 

  • Kleijn D, Winfree R, Bartomeus I et al (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun 6:7414

    Article  PubMed  Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B-Biol Sci 274:303–313

    Article  Google Scholar 

  • Kovacs-Hostyanszki A, Haenke S, Batary P, Jauker B, Baldi A, Tscharntke T, Holzschuh A (2013) Contrasting effects of mass-flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecol Appl 23:1938–1946

    Article  PubMed  Google Scholar 

  • Landis D, Wratten SD, Gurr G (2000) Habitat manipulation to conserve natural enemies in arthropod pests in agriculture. Annu Rev Entomol 45:173–199

    Article  Google Scholar 

  • Lautenbach S, Seppelt R, Liebscher J, Dormann CF (2012) Spatial and temporal trends of global pollination benefit. PLoS One 7:e35954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindström SAM, Herbertsson L, Rundlöf M, Bommarco R, Smith HG (2016) Experimental evidence that honey bees depress wild insect densities in a flowering crop. Proc R Soc B 283:20161641

    Article  PubMed  PubMed Central  Google Scholar 

  • Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Conserv 106:259–271

    Article  Google Scholar 

  • Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res 49:1–6

    Article  Google Scholar 

  • Ponisio LC, M’Gonigle LK, Kremen C (2016) On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob Chang Biol 22:704–715

    Article  PubMed  Google Scholar 

  • Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84:2628–2642

    Article  Google Scholar 

  • Potts SG, Woodcock BA, Roberts SPM, Tscheulin T, Pilgrim ES, Brown VK, Tallowin JR (2009) Enhancing pollinator biodiversity in intensive grasslands. J Appl Ecol 46:369–379

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Pywell RF, Warman EA, Hulmes L, Hulmes S, Nuttall P, Sparks TH, Critchley CNR, Sherwood A (2006) Effectiveness of new Agri-environment schemes in providing foraging resources for bumble bees in intensively farmed landscapes. Biol Conserv 129:192–206

    Article  Google Scholar 

  • Pywell RF, Meek WR, Hulmes L, Hulmes S, James KL, Nowakowski M, Carvell C (2011) Management to enhance pollen and nectar resources for bumble bees and butterflies within intensively farmed landscapes. J Insect Conserv 15:853–864

    Article  Google Scholar 

  • Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng’ A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515

    Article  PubMed  Google Scholar 

  • Riedinger V, Mitesser O, Hovestadt T, Steffan-Dewenter I, Holzschuh A (2015) Annual dynamic of wild bee densities: attractiveness and productivity effects of oilseed rape. Ecology 96:1351–1360

    Article  PubMed  Google Scholar 

  • Rollin O, Bretagnolle V, Decourtye A, Aptel J, Michel N, Vaissière BE, Henry M (2013) Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agric Ecosyst Environ 179:78–86

    Article  Google Scholar 

  • Rossing WAH, Poehling HM, Burgio G (2003) Landscape management for functional biodiversity. Proceedings of the 1st meeting of the study group, Bologna, Italy, 11–14 May 2003

    Google Scholar 

  • Scheper J, Holzschuh A, Kuussaari M, Potts SG, Rundlöf M, Smith HG, Kleijn D (2013) Environmental factors driving the effectiveness of European Agri-environmental measures in mitigating pollinator loss – a meta-analysis. Ecol Lett 16:912–920

    Article  PubMed  Google Scholar 

  • Schüepp C, Herrmann JD, Herzog F, Schmidt-Entling MH (2011) Differential effects of habitat isolation and landscape composition on wasps, bees, and their enemies. Oecologia 165:713–721

    Article  PubMed  Google Scholar 

  • Seifan M, Hoch EM, Hanoteaux S, Tielbörger K (2014) The outcome of shared pollination services is affected by the density and spatial pattern of an attractive neighbour. J Ecol 102:953–962

    Article  Google Scholar 

  • Smitley D, Brown D, Elsner E, Landis JN, Shrewsbury PM, Herms DA (2016) Protecting and enhancing pollinators in urban landscapes - MSU extension bulletin E3314. 30 pages

    Google Scholar 

  • Stanley DA, Gunning D, Stout JC (2013) Pollinators and pollination of oilseed rape crops (Brassica napus L.) in Ireland: ecological and economic incentives for pollinator conservation. J Insect Conserv 17:1181–1189

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2001) Succession of bee communities on fallows. Ecography 24:83–93

    Article  Google Scholar 

  • Stoeckli S, Birrer S, Zellweger-Fischer J, Balmer O, Jenny M, Pfiffner L (2017) Quantifying the extent to which farmers can influence biodiversity on their farms. Agric Ecosyst Environ 237:224–233

    Article  Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2008) Reprint of “conservation biological control and enemy diversity on a landscape scale” [Biol Control 43 (2007) 294–309]. Biol Control 45:238–253

    Article  Google Scholar 

  • Wratten S, Lavandero B, Scarratt S, Vattala Don (2003) Conservation biological control of insect pests at the landscape scale. IOBC/WPRS Bulletin 26:215–220

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the EU via Core-Organic II (Bicopoll, Targeted precision biocontrol and pollination enhancement in organic cropping systems), the work of Eve Veromann was supported by institutional research funding IUT36-2 of the Estonian Ministry of Education and Research. Support for Otto Boecking came from the Federal Ministry of Food and Agriculture (BOEL, FKZ 03OE126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maccagnani, B., Veromann, E., Ferrari, R., Boriani, L., Boecking, O. (2020). Agroecosystem Design Supports the Activity of Pollinator Networks. In: Smagghe, G., Boecking, O., Maccagnani, B., Mänd, M., Kevan, P. (eds) Entomovectoring for Precision Biocontrol and Enhanced Pollination of Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-18917-4_1

Download citation

Publish with us

Policies and ethics