Skip to main content

Non-conventional Micro-machining Processes

  • Chapter
  • First Online:
Materials Forming, Machining and Post Processing

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Nonconventional micromachining processes are developed to meet the manufacturing requirements of new materials and products where usual processes are found inadequate. Based on the type of energy used for material removal, the different micromachining processes are classified into thermal, mechanical, chemical and hybrid processes. Hybrid processes combine two or more machining processes to achieve the desired machining. Descriptions of the important micromachining processes, their material removal mechanism and salient application fields are dealt with in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEDMM:

Abrasive electro-discharge micro-machining

AJM:

Abrasive jet machining

AWJM:

Abrasive water jet machining

CAD:

Computer aided design

CAM:

Computer aided manufacturing

CD:

Chemical dissolution

CHM:

Chemical milling

CMM:

Coordinate measuring machine

CNC:

Computer numerical control

DC:

Direct current

ECD:

Electrochemical dissolution

ECDG:

Electrochemical discharge grinding

ECDM:

Electrochemical discharge machining

ECG:

Electrochemical grinding

ECM:

Electrochemical machining

EDM:

Electro discharge machining

G:

Grinding

HAZ:

Heat-affected zone

IBMM:

Ion beam micro-machining

IEG:

Inter-electrode gap

LBM:

Laser beam machining

MRR:

Material removal rate

PMMA:

Polymethyl methacrylate

PZT:

Piezoelectric transducer

UHP:

Ultra high power

USM:

Ultrasonic machining

USMEC:

Ultrasonic-assisted electrochemical machining

VAM:

Vibration assisted machining

WJ:

Waterjet

WJM:

Water jet machining

References

  1. Jain VK (2009) Magnetic field assisted abrasive based micro-/nano-finishing. J Mater Process Technol 209(20):6022–6038

    Article  CAS  Google Scholar 

  2. Snoeys R, Staelens F, Dekeyser W (1986) Current trends in non-conventional material removal processes. Ann CIRP 35(2)

    Article  Google Scholar 

  3. Taniguchi N (1983) Current status in, and future trends of ultraprecision machining and ultrafine materials processing. Ann CIRP 32(2):573–582

    Article  Google Scholar 

  4. Ashby MF (2010) Materials selection in mechanical design. Elsevier, USA

    Google Scholar 

  5. Hofy HE (2005) Advanced machining processes non-traditional and hybrid machining processes. McGraw-Hill, New York

    Google Scholar 

  6. Kibria G, Bhattacharyya B, Davim JP (2017) Non-traditional micromachining processes fundamentals and applications. Springer, pp. 63–65

    Google Scholar 

  7. Snoeys R, Staelens F, Dekeyser F (1986) Current trends in non-conventional material removal processes. Ann CIRP 35:467–480

    Article  Google Scholar 

  8. Egashira K, Masuzawa T (1999) Microultrasonic machining by the application of workpiece vibration. CIRP Ann—Manuf Technol 48(1):131–134

    Article  Google Scholar 

  9. Kremer D, Saleh SM, Ghabrial SR, Moisan A (1981) The state of the art of ultrasonic machining. CIRP Ann—Manuf Technol 30(1):107–110

    Article  Google Scholar 

  10. Egashira K, Masuzawa T (1999) Micro ultrasonic machining by the application of workpiece vibration. CIRP Ann—Manuf Technol 48:131–134

    Article  Google Scholar 

  11. Sun XQ, Masuzawa T, Fujino M (1996) Micro ultrasonic machining and self-aligned multilayer machining/assembly technologies for 3D micro machines. In: Proceedings of the IEEE micro electro mechanical systems (MEMS’96), pp 312–317

    Google Scholar 

  12. Boy JJ, Andrey E, Boulouize A, Khan-Malek C (2010) Developments in microultrasonic machining (MUSM) at FEMTO-ST. Int J Adv Manuf Technol 47:37–45

    Article  Google Scholar 

  13. Yu ZY, Rajurkar KP, Tandon A (2004) Study of 3D microultrasonic machining. J Manuf Sci Eng, Trans ASME 126:727–732

    Article  Google Scholar 

  14. Curodeau A, Guay J, Rodrigue D, Brault L, Gagné D, Beaudoin LP (2008) Ultrasonic abrasive l-machining with thermoplastic tooling. Int J Mach Tools Manuf 48:1553–1561

    Article  Google Scholar 

  15. Wakuda M, Yamauchi Y, Kanzaki S (2003) Material response to particle impact during abrasive jet machining of alumina ceramics. J Mater Process Technol 132(1–3):177–183

    Article  CAS  Google Scholar 

  16. Haldar B, Adak DK, Ghosh D, Karmakar A, Habtamu E, Ahmed M, Das S (2018) Present status and some critical issues of abrasive jet materials processing: a review. Procedia Manuf 20:523–529

    Article  Google Scholar 

  17. Chastagner MW, Shih AJ, Arbor A (2007) Trans NAMRI/SME 35:359–366

    Google Scholar 

  18. Finnie Iain (1960) Wear 3:87–103

    Article  Google Scholar 

  19. R.H. Mohammad Jafar, J.K. Spelt, M. Papini, Wear 303 (2013) 138–145

    Article  CAS  Google Scholar 

  20. Mishra PK (2014) Nonconventional machining. Narosa, India

    Google Scholar 

  21. Nouhi A, Kowsari K, Spelt JK, Papini M (2016) Abrasive jet machining of channels on highly-curved glass and PMMA surfaces. Wear 356–357:30–39

    Article  CAS  Google Scholar 

  22. El-Domiaty A, Abd El-Hafez HM, Shaker MA (2009) Drilling of glass sheets by abrasive jet machining, world academy of science, engineering and technology. Int J Mech Aerosp Ind Mechatron Manuf Eng 3:8

    Google Scholar 

  23. Benedict GF (1987) Non-traditional manufacturing processes. Marcel Dekker Inc., New York

    Google Scholar 

  24. Getu H, Ghobeity A, Spelt JK, Papini M (2007) Abrasive jet micromachining of polymethylmethacrylate. Wear 263:1008–1015

    Article  CAS  Google Scholar 

  25. Getu H, Ghobeity A, Spelt JK, Papini M (2008) Abrasive jet micromachining of acrylic and polycarbonate polymers at oblique angles of attack. Wear https://doi.org/10.1016/j.wear01.013

  26. Belloy E, Thurre S, Walckiers E, Sayah A, Gijs MAM (2000) The introduction of powder blasting for sensor and microsystems applications. Sens Actuators: A: Phys 84:330–337

    Article  CAS  Google Scholar 

  27. Pawlowski A, Belloy E, Sayah A, Gijs MAM (2003) Powder blasting patterning technology for microfabrication of complex suspended structures in glass. Microelectron Eng 67–68:557–565

    Article  CAS  Google Scholar 

  28. Liu HT, Schubert E (2012) Micro abrasive-waterjet technology. In: Micromachining techniques for fabrication of micro and nano structured, vol 10, pp 205–234

    Google Scholar 

  29. Liu HT, Hovanski Y, Caldwell DD, Williford RE (2008) Low-cost manufacturing of flow channels with multi-nozzle abrasive-waterjets: a feasibility investigation. In: Proceedings of the 19th international conference on water jetting, pp 337–351

    Google Scholar 

  30. Liu H-T (2010) Waterjet technology for machining fine features pertaining to micromachining. J Manuf Process 12:8–18

    Article  Google Scholar 

  31. Miller DS (2003) Developments in abrasive waterjets for micromachining. In: Proceedings of the 2003 WJTA American waterjet conference 2003

    Google Scholar 

  32. Liu HT (2016) Versatility of micro abrasive waterjet technology for machining nanomaterials. Encyclopaedia of Nanoscience and Nanotechnology, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  33. Liu HT, McNiel D (2010) Versatility of waterjet technology: from macro and micro machining for most materials. In: Proceedings of the 20th international conf. on water jetting, pp 419–433. BHR Group, Cranfield

    Google Scholar 

  34. Haghbin N, Spelt JK, Papini M (2015) Abrasive waterjet micro-machining of channels in metals: comparison between machining in air and submerged in water. Int J Mach Tools Manuf 88:108–117

    Article  Google Scholar 

  35. Liu HT (2006) Collateral damage by stagnation pressure buildup during abrasive-fluid jet piercing. In: Proceedings of the 18th international conference on water jetting, pp 47–61. BHR Group, Cranfield

    Google Scholar 

  36. Filiz S, Conley CM, Wasserman MB, Burak Ozdoganlar N (2007) An experimental investigation of micromachinability of copper 101 using tungsten carbide micro-endmills. Int J Machine Tools Manuf 47:1088–1100

    Article  Google Scholar 

  37. Snoeys R, Staelens F, Dekeyser W (1986) Current trends in non-conventional material removal processes. Ann CIRP 35(2):467–480

    Article  Google Scholar 

  38. Tam SC, Williams R, Yang LJ, Jana S, Lim LE, Lau MW (1990) Laser processing of air craft components. J Mater Process Technol 32:177–194

    Article  Google Scholar 

  39. Yeo C, Tam S, Jana S, Lau M (1994) A technical review of laser drilling of aerospace materials. J Mat Process Technol 42:15–49

    Article  Google Scholar 

  40. Ueda T, Yamada K, Nakayama K (1997) Temperature of workpiece material irradiated with CO2 laser. Ann CIRP 46(1):117–122

    Article  Google Scholar 

  41. Spur G, Appel S, Liebelt S (1997) Non-linear modelling and simulation of laser cutting and grooving of fiber reinforced thermo plastics. In: 32nd MATADOR conference, Manchester, pp 381–386

    Google Scholar 

  42. Sen A, Doloi B, Bhattacharyya B (2014) Experimental studies on fibre laser micromachining of Ti-6Al-4 V. In: 5th international & 26th all India manufacturing technology, design and research conference (AIMTDR 2014)

    Google Scholar 

  43. Rizvi NH (2003) Femtosecond laser micromachining: current status and applications. Riken Review 50:107–112

    Google Scholar 

  44. Loeschner U, Mauersberger S, Ebert R (2008) Micromachining of glass with short ns-pulses and highly repetitive fs-laser pulses. In: Proceedings of the 27th international congress on applications of lasers and electro-optics (ICALEO ’08), pp 193–201

    Google Scholar 

  45. Rizvi N (2003) Femtosecond laser micromachining: current status and applications. Riken Rev 50:77–82

    Google Scholar 

  46. Gower MC (2000) Industrial application of laser micromachining. Opt Express 7:56–67

    Article  CAS  Google Scholar 

  47. Kunieda M, Yoshida M (1997) Electrical discharge machining in gas. Ann CIRP 46(1):143–146

    Article  Google Scholar 

  48. Lin YC, Chen YF, Wang AC, Sei WL (2012) Machining performance on hybrid process of abrasive jet machining and electrical discharge machining. Trans Nonferrous Met Soc China 22:s775–s780

    Article  Google Scholar 

  49. Jameson EC (2001) Description and development of electrical discharge machining (EDM). In: Electrical discharge machining, society of manufacturing engineers, Dearbern, Michigan, p 12

    Google Scholar 

  50. Newman ST, Ho KH (2003) The state of art—electrical discharge machining. Int J Mach Tools Manuf 43:1287–1300

    Article  Google Scholar 

  51. Koch O, Ehrfeld W, Michel F, Gruber HP (2001) Recent progress in micro-electro discharge machining technology—part 1. In: Proceedings of the 13th international symposium for electromachining ISEM XIII, Bilbao, Spain

    Google Scholar 

  52. Jahan MP, Rahman M, Wong YS, Fuhua L (2010) On-machine fabrication of high-aspect-ratio microelectrodes and application in vibration-assisted micro- EDM drilling of tungsten carbide. Proc Inst Mech Eng Part B: J Eng Manuf 224:795–814

    Article  Google Scholar 

  53. Takahata K, Shibaike N, Guckel H (2000) High-aspect-ratio WC–Co microstructure produced by the combination of LIGA and micro-EDM. Microsyst Technol 6:175–178

    Article  Google Scholar 

  54. Liu K, Lauwers B, Reynaerts D (2010) Process capabilities of Micro-EDM and its applications. Int J Adv Manuf Technol 47:11–19

    Article  Google Scholar 

  55. Liao YS et al (2005) Fabrication of high aspect ratio microstructure arrays by micro reverse wire-EDM. J Micromech Microeng 15:1547

    Article  Google Scholar 

  56. Lin CS et al (2010) Fabrication of micro ball joint by using micro-EDM and electroforming. Microelectron Eng 87:1475–1478

    Article  CAS  Google Scholar 

  57. Gao G, Zhao W, Wang Z, Gou Y (2005) Instantaneous fabrication of tungsten microelectrode based on single electrical discharge. J Mat Process Technol 168:83–88

    Article  CAS  Google Scholar 

  58. Sahu RK, Hiremath Somashekhar S, Manivannan PV, Singaperumal M (2014) Generation and characterization of copper nanoparticles using micro-electrical discharge machining. Mat Manuf Process 29(4):477–486

    Article  CAS  Google Scholar 

  59. HMT Production Technology (1986), 1st edn, McGraw Hill Education (India) Pvt. Ltd.

    Google Scholar 

  60. Han MS, Min BK, Lee SJ (2011) Micro-electrochemical discharge cutting of glass using a surface-textured tool. CIRP J Manuf Sci Technol 4(4):362–369

    Article  Google Scholar 

  61. Kibria G, Bhattacharyya B, Davim JP (2017) Non-traditional micromachining processes. Springer

    Google Scholar 

  62. Das AK, Saha P (2013) Machining of circular micro holes by electrochemical micro-machining process. Adv Manuf 1:314–319

    Article  Google Scholar 

  63. Lohrengel MM, Kluppel I, Rosenkranz C, Bettermann H, Schultze JW (2003) Microscopic investigations of electrochemical machining of Fe in NaNO3. Electrochimia Acta 48:3203–3211

    Article  CAS  Google Scholar 

  64. Kozak J, Rajurkar KP, Wei B (1994) Modeling and analysis of pulse electrochemical machining. Transac ASME 116:316–323

    Google Scholar 

  65. Landolt D, Chauvy PF, Zinger O (2003) Electrochemical micro machining, polishing and surface structuring of metals: fundamental aspects and new developments. Electrochimia Acta 48:3185–3201

    Article  CAS  Google Scholar 

  66. Datta M, Landolt D (2000) Fundamental aspects and applications of electrochemical micro fabrication. Electrochimia Acta 45:2535–2558

    Article  CAS  Google Scholar 

  67. Bassu M, Strambini LM, Barillaro G (2011) Advances in electrochemical micromachining of silicon: towards MEMS fabrication. Procedia Eng 25:1653–1656

    Article  CAS  Google Scholar 

  68. Munda J, Malapati M, Bhattacharyya B (2007) Control of microspark and stray-current effect during EMM process. J Mat Process Technol 194:151–158

    Article  CAS  Google Scholar 

  69. Karunakaran K, Pushpa V, Akula S, Suryakumar S (2008) Techno-economic analysis of hybrid layered manufacturing. Int J Intell Syst Technol Appl 4:161–176

    Google Scholar 

  70. Gupta K, Jain NK, Laubscher RF (2016) Hybrid machining processes: perspectives on machining and finishing. Springer

    Google Scholar 

  71. Heisel U, Wallaschek J, Eisseler R, Potthast C (2008) Ultrasonic deep hole drilling in electrolytic copper ECu 57. CIRP Ann-Manuf Technol 57:53–56

    Article  Google Scholar 

  72. Lauwers B, Klocke F, Klink A (2014) Hybrid processes in manufacturing. CIRP Ann-Manuf Techn 63:561–583

    Article  Google Scholar 

  73. Paul L (2015) Characterisation of micro features produced using micro ECDM process: experimental and theoretic investigation. A dissertation submitted for doctoral degrees, IIT Madras, India

    Google Scholar 

  74. Fascio V, Langen HH, Bleuler H, Comninellis C (2003) Investigations of the spark assisted chemical engraving. Electrochem Commun 5:203–207

    Article  CAS  Google Scholar 

  75. Khairy ABE, Mcgeough JA (1990) Die-sinking by electro erosion-dissolution machining, CIRP Ann. Manuf Technol 39:191–195

    Article  Google Scholar 

  76. Didar TF, Dolatabadi A, Wüthrich R (2008) Characterization and modeling of 2D glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity. J Micromech Micro Eng 18:9

    Google Scholar 

  77. Jain VK, Chak SK (2000) Electrochemical spark trepanning of alumina and quartz. Mach Sci Technol 4:277–290

    Article  CAS  Google Scholar 

  78. Furutani K, Maeda H (2008) Machining a glass rod with a lathe-type electro-chemical discharge machine. J Micromech Microeng 18:8

    Article  CAS  Google Scholar 

  79. Schöpf M, Beltram I, Boccadoro M, Kramer D (2001) ECDM (Electrochemical discharge machining) a new method for trueing and dressing of metal bonded diamond grinding tools. CIRP Ann Manuf Technol 50:125–128

    Article  Google Scholar 

  80. Peng WY, Liao YS (2004) Study of electrochemical discharge machining technology for slicing non-conductive brittle materials. J Mater Process Technol 149:363–369

    Article  CAS  Google Scholar 

  81. Paul Lijo, Hiremath Somashekhar S (2016) Experimental and theoretical investigations in ECDM process—an overview. Procedia Technol 25:1242–1249

    Article  Google Scholar 

  82. Paul Lijo, Hiremath Somashekhar S (2016) Improvement in machining rate with mixed electrolyte in ECDM process. Procedia Technol 25:1250–1256

    Article  Google Scholar 

  83. Paul Lijo, Hiremath Somashekhar S (2013) Response surface modelling of micro holes in electrochemical discharge machining process. Procedia Eng 64:1395–1404

    Article  CAS  Google Scholar 

  84. Paul Lijo, George Bibin P, Varghese Ashwin (2018) FEM of ECDM process on semi conducting materials. Appl Mech Mat 877:87–91

    Article  Google Scholar 

  85. Paul Lijo, Hiremath Somashekhar S (2014) Characterisation of micro channels in electrochemical discharge machining process. Appl Mech Mat 490:238–242

    Article  CAS  Google Scholar 

  86. Paul Lijo, George Bibin P, Varghese Ashwin (2018) Characterisation of Micro Channels Machined with ECDM for Fluidic Applications. Appl Mech Mat 877:82–86

    Article  Google Scholar 

  87. Jain Vijay K, Gehlot Dileep (2015) Anode shape prediction in through-mask-ECMM using FEM. Mach Sci Technol 19(2):286–312

    Article  Google Scholar 

  88. Solignac D, Sayah A, Constantin S, Freitag R, Gijs MA (2001) Powder blasting for realization of microchips for bio-analytic applications. Sens Actuators A 92:388–393

    Google Scholar 

  89. Liu C, Chen J, Engel J, Zou J, Wang X, Fan Z, Ryu K, Shaikh K, Bullen D (2003) Polymer micromachining and applications in sensors, microfluidics, and nanotechnology. In: 226th national meeting of the american chemical society (ACS), New York

    Google Scholar 

  90. Lin YC, Chen YF, Wang AC, Sei WL (2012) Machining performance on hybrid process of abrasive jet machining and electrical discharge machining. Trans Met Soc China 22:775–780

    Article  Google Scholar 

  91. Singh T, Dvivedi A (2016) Developments in electrochemical discharge machining: a review on electrochemical discharge machining, process variants and their hybrid methods. Int J Mach Tools Manuf 105:1–13

    Article  Google Scholar 

  92. Han MS, Min BK, Lee SJ (2007) Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte. J Mat Process Technol 191:224–227

    Article  CAS  Google Scholar 

  93. Goud M, Sharma AK, Jawalkar C (2016) A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate. Precis Eng 45:1–17

    Article  Google Scholar 

  94. Thoe TB, Aspinwall DK, Wise ML (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38239–38355

    Google Scholar 

  95. Yu Z, Rajurkar KP, Tandon A (2004) Study of 3D micro-ultrasonic machining. J Manuf Sci Eng 126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijo Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paul, L., Babu, J., Paulo Davim, J. (2020). Non-conventional Micro-machining Processes. In: Gupta, K. (eds) Materials Forming, Machining and Post Processing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-18854-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18854-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18853-5

  • Online ISBN: 978-3-030-18854-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics