Skip to main content

Graphene Plasmonics Based Terahertz Integrated Circuits

  • Chapter
  • First Online:

Part of the book series: Reviews in Plasmonics ((RIP,volume 2017))

Abstract

This chapter outlines the design and full wave analysis of terahertz integrated circuits using graphene plasmonic waveguides. The material properties of graphene at THz frequencies have been discussed first, and later the guiding properties of graphene plasmonic waveguide structures are discussed. Emphasis has been given to provide details of modeling of graphene plasmonic parallel plate waveguide and it’s variants such as nano strip, suspended nano strip, coplanar and graphene backed coplanar waveguides to determine wave properties such as phase constant, attenuation constant, characteristic impedance and propagation length. Examples of graphene plasmonic waveguide based THz integrated circuits such as resonator, band pass filter, power splitter; coupler, phase shifter, oscillator and antenna have also been given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Federici J, Moeller L (2010) Review of terahertz and subterahertz wireless communications. J Appl Phys 107:1111011–1111022

    Article  Google Scholar 

  2. Seeds AJ, Shams H, Fice MJ, Renaud CC (2015) Terahertz photonics for wireless communications. J Light Technol 33(3):579–587

    Article  Google Scholar 

  3. Nagatsuma T, Ducournau G, Renaud CC (2016) Advances in terahertz communications accelerated by photonics. Nat Photonics 10:371–379

    Article  CAS  Google Scholar 

  4. Akyildiz IF, Jornet JM, Han C (2014) Terahertz band: next frontier for wireless communications. Phys Commun 12:16–32

    Article  Google Scholar 

  5. Nagatsuma T, Horiguchi S, Minamikata Y, Yoshimizu Y, Hisatake S, Kuwano S, Yoshimoto N, Terada J, Takahashi H (2013) Terahertz wireless communications based on photonics technologies. Optics Express 21(20):23736–23747

    Google Scholar 

  6. Ducournau G, Szriftgiser P, Pavanello F, Peytavit E, Zaknoune M, Bacquet D, Beck A, Akalin T, Lampin JF (2014) THz communications using Photonics and Electronic devices: the race to data-rate. J. Infrared Milli Terahz waves 36:198–220

    Article  Google Scholar 

  7. McKenna TP, Nanzer JA, Clark TR (2015) Photonic millimeter-wave system for high-capacity wireless communications. John Hopkins APL Tech Dig 33(1):57–67

    CAS  Google Scholar 

  8. Kürner T, Priebe S (2013) Towards THz communications—status in research, standardization and regulation. J Infrared Millim Terahertz Waves 35(53):1–10

    Google Scholar 

  9. Docherty CJ, Johnston MB (2012) Terahertz properties of graphene. J Infrared Millim Terahertz Waves 33:797–815

    Article  CAS  Google Scholar 

  10. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. Am Chem Soc 8(2):1086–1101

    CAS  Google Scholar 

  11. Maier SA (2006) Plasmonics: fundamentals and applications. Springer, Berlin

    Google Scholar 

  12. Gómez-Díaz JS, Perruisseau-Carrier J (2012) Microwave to THz properties of graphene and potential antenna applications. In: Proceedings of ISAP 2012, pp 239–242

    Google Scholar 

  13. Grigorenko AN, Polini M and Novoselov KS (2013) Graphene plasmonics—optics in flatland 1–19

    Google Scholar 

  14. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  15. Gu X, Lin IT, Liu JM (2013) Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures. Appl Phys Lett 103(071103):1–4

    Google Scholar 

  16. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315(2000):1379

    Article  CAS  Google Scholar 

  17. Zhang Y, Tan Y, Stormer HL, Kim P (2006) Experimental observation of quantum Hall-effect and Berry’s phase in graphene. Nature 438:201–204

    Article  Google Scholar 

  18. Mikhail KI (2007) Graphene : carbon in two dimensions. Mater Today 10(1):20–27

    Google Scholar 

  19. Stauber T, Peres NMR, Geim AK (2008) Optical conductivity of graphene in the visible region of the spectrum. Phys Rev B—Condens Matter Mater Phys 78:1–8

    Google Scholar 

  20. Vasko FT, Ryzhii V (2007) Voltage and temperature dependencies of conductivity in gated graphene. Phys Rev B—Condens Matter Mater Phys 76:1–5

    Article  Google Scholar 

  21. Falkovsky LA, Pershoguba SS (2007) Optical far-infrared properties of a graphene monolayer and multilayer. Phys Rev B—Condens Matter Mater Phys 76(3):1–4

    Google Scholar 

  22. Kymakis E, Stratakis E, Stylianakis MM, Koudoumas E, Fotakis C (2011) Spin coated graphene films as the transparent electrode in organic photovoltaic devices. Thin Solid Films 520:1238–1241

    Article  CAS  Google Scholar 

  23. Paul MJ, Chang YC, Thompson ZJ, Stickel A, Wardini J, Choi H, Minot ED, Norris TB, Lee YS (2013) High-field terahertz response of graphene New. J Phys 15:1–12

    Google Scholar 

  24. Nikolaenko AE, Atmatzakis E, Papasimakis N, Luo Z, Shen ZX, Boden S, Ashburn P and Zheludev NI (2012) Terahertz Bandwidth Optical Nonlinearity of Graphene Metamaterial. In: Conference lasers electro-optics 2012:1–2

    Google Scholar 

  25. Field HT (2014) Temperature-dependent of nonlinear optical conductance of graphene-based systems in high intensity THz field. Nano-Micro Lett 6(2):153–162

    Article  Google Scholar 

  26. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:1–8

    Article  Google Scholar 

  27. Hanson GW (2008) Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J Appl Phys 104:1–5

    Article  Google Scholar 

  28. Buslaev PI, Iorsh IV, Shadrivov IV, Belov PA, Kivshar YS (2013) Plasmons in waveguide structures formed by two graphene layers. JETP Lett 97(9):535–539

    Article  CAS  Google Scholar 

  29. Correas-Serrano D, Gomez-Diaz JS, Perruisseau-Carrier J, Álvarez-Melcón A (2013) Spatially dispersive graphene single and parallel plate waveguides: analysis and circuit model. IEEE Trans Microw Theory Tech 61(12):4333–4344

    Article  Google Scholar 

  30. Gomez-Diaz JS, Mosig JR, Perruisseau-Carrier J (2013) Effect of Spatial Dispersion on Surface Waves Propagating Along Graphene Sheets. IEEE Trans Antennas Propag 61(7):3589–3596

    Article  Google Scholar 

  31. Svintsov D, Vyurkov V, Ryzhii V and Otsuji T (2013) Voltage-controlled surface plasmon-polaritons in double graphene layer structures. J Appl Phys 113(4):053701, 1–5

    Google Scholar 

  32. Hajian H, Soltani-Vala A, Kalafi M, Leung PT (2014) Surface plasmons of a graphene parallel plate waveguide bounded by Kerr-type nonlinear media. J Appl Phys 115(083104):1–7

    Google Scholar 

  33. Malekabadi A, Charlebois SA, Deslandes D (2013) Parallel plate waveguide with anisotropic graphene plates: effect of electric and magnetic biases. J Appl Phys 113(113708):1–9

    Google Scholar 

  34. Hajian H, Soltani-Vala A and Kalafi M (2013) Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal. J Appl Phys 114(2013):033102, 1–8

    Google Scholar 

  35. Burke PJ (2003) An RF circuit model for carbon nanotubes. IEEE Trans Nanotechnol 2(1):53–55

    Article  Google Scholar 

  36. Gomez-Diaz JS, Perruissea-Carrier J (2013) A transmission line model for plasmon propagation on a graphene strip. In: IEEE MTT-S international microwave symposium digest, pp. 1–3

    Google Scholar 

  37. Koul SK, Kumbhat A, Basu A (2007) Micromachined conductor backed coplanar waveguides for millimeter wave circuit application. Indian J Pure Appl Phys 45:336–344

    CAS  Google Scholar 

  38. Simons RN, Ponchak GE (1988) Modeling of some coplanar waveguide discontinuities. IEEE Trans Microw Theory Tech 36:1796–1803

    Article  Google Scholar 

  39. Prasad M, Gaur AS, Sharma VK, Pathak NP (2008) Modeling of multilayer suspended microstrip line and its discontinuities on CMOS grade silicon substrate for millimeter wave integrated circuit applications. Int J Infrared Milli Waves 29:1123–1135

    Article  CAS  Google Scholar 

  40. Joshi N, Pathak NP (2016) Modeling of graphene coplanar waveguide and its discontinuities for THz integrated circuit applications. Plasmonics 1–10

    Google Scholar 

  41. Joshi N, Pathak NP (2015) Graphene backed graphene plasmonic coplanar waveguide (GB-GCPW) for terahertz integrated circuit applications. In: Proceedings of applied electromagnetics conference 103:1–2

    Google Scholar 

  42. Chen PY, Argyropoulos C, Alu A (2013) Terahertz antenna phase shifters using integrally-gated graphene transmission-lines. IEEE Trans Antennas Propag 61(4):1528–1537

    Article  Google Scholar 

  43. Xia X, Wang J, Zhang F, Da Hu Z, Liu C, Yan X, Yuan L (2015) Multi-mode plasmonically induced transparency in dual coupled graphene-integrated ring resonators. Plasmonics 10(6):1409–1415

    Article  CAS  Google Scholar 

  44. Gao Y, Ren G, Zhu B, Huang L, Li H, Yin B, Jian S (2015) Tunable plasmonic filter based on graphene split-ring. Plasmonics 11(1):291–296

    Article  Google Scholar 

  45. Joshi N, Pathak NP (2017) Compact ultra-wide-band graphene based tunable band-pass filter paper accepted for oral presentation in second international conference on advanced functional materials. Los Angeles, USA

    Google Scholar 

  46. Correas Serrano D, Gomez-Diaz JS, Perruissea-Carrier J, Alvarez-Melcon (2014) A Graphene-based plasmonic tunable low-pass filters in the THz band. IEEE Trans Nanotechnol 13(6):1145–1153

    Article  Google Scholar 

  47. Deng H, Yan Y, Xu Y (2015) Tunable flat-top bandpass filter based on coupled resonators on a graphene sheet. IEEE Photonics Technol Lett 27(11):1161–1164

    Article  CAS  Google Scholar 

  48. He MD, Wang KJ, Wang L, Li JB, Liu JQ, Huang ZR, Wang L, Wang L, Hu WD, Chen X (2014) Graphene based terahertz tunable plasmonic directional coupler. Appl Phys Lett 105:0819031–0819035

    Google Scholar 

  49. Rana F (2008) Graphene terahertz plasmon oscillators. IEEE Trans Nanotechnol 7(1):91–99

    Article  Google Scholar 

  50. Llaster I, Kremers C, Aparicio AC, Jornet JM, Alarcon E, Chigrin DN (2012) Graphene based nano patch antenna for terahertz radiation. Elsevier, 1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra P. Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, N., Pathak, N.P. (2019). Graphene Plasmonics Based Terahertz Integrated Circuits. In: Geddes, C. (eds) Reviews in Plasmonics 2017. Reviews in Plasmonics, vol 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-18834-4_2

Download citation

Publish with us

Policies and ethics