Skip to main content

Basal Ganglio-thalamo-cortico-spino-muscular Model of Parkinson’s Disease Bradykinesia

  • Chapter
  • First Online:
Book cover Multiscale Models of Brain Disorders

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 13))

  • 575 Accesses

Abstract

Bradykinesia is the cardinal symptom of Parkinson’s disease (PD) related to slowness of movement. The causes of PD bradykinesia are not known largely, because there are multiple brain areas and pathways involved from the neuronal degeneration site (dopamine (DA) neurons in substantia nigra pars compacta (SNc) and ventral tegmental area (VTA)) to the muscles. A neurocomputational model of basal ganglio-thalamo-cortico-spino-muscular dynamics with dopamine of PD bradykinesia is presented as a unified theoretical framework capable of producing a wealth of neuronal, electromyographic, and behavioral movement empirical findings reported in parkinsonian human and animal brain studies. The model attempts to uncover how information is processed in the affected brain areas, what role does DA play, and what are the biophysical mechanisms giving rise to the observed slowness of movement in PD bradykinesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbs JH, Hartman DE, Vishwanat B (1987) Orofacial motor control impairment in Parkinson’s disease. Neurology 37:394–398

    Article  CAS  PubMed  Google Scholar 

  2. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. TINS 12:366–375

    CAS  PubMed  Google Scholar 

  3. Benazzouz A, Gross C, Dupont J, Bioulac B (1992) MPTP induced hemiparkinsonism in monkeys: behavioral, mechanographic, electromyographic and immunohistochemical studies. Exp Brain Res 90:116–120

    Article  CAS  PubMed  Google Scholar 

  4. Benecke R, Rothwell JC, Dick JPR (1986) Performance of simultaneous movements in patients with Parkinson’s disease. Brain 109:739–757

    Article  PubMed  Google Scholar 

  5. Berardelli A, Dick JPR, Rothwell JC, Day BL, Marsden CD (1986) Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 49:1273–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bjorklund A, Lindvall O (1984) Dopamine containing systems in the CNS. In: Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy. Classical transmitters in the CNS, Part 1, vol 2. Elsevier, Amsterdam, pp 55–121

    Google Scholar 

  7. Bullock D, Contreras-Vidal JL (1993) How spinal neural networks reduce discrepancies between motor intention and motor realization. In: Newel K, Corcos D (eds) Variability and motor control. Human Kinetics Press, Champaign., 1993, pp 183–221

    Google Scholar 

  8. Camarata PJ, Parker RG, Park SK, Haines SJ, Turner DA, Chae H et al (1992) Effects of MPTP induced hemiparkinsonism on the kinematics of a two-dimensional, multi-joint arm movement in the rhesus monkey. Neuroscience 48(3):607–619

    Article  CAS  PubMed  Google Scholar 

  9. Connor NP, Abbs JH (1991) Task-dependent variations in parkinsonian motor impairments. Brain 114:321–332

    PubMed  Google Scholar 

  10. Corcos DM, Chen CM, Quinn NP, McAuley J, Rothwell JC (1996) Strength in Parkinson’s disease: relationship to rate of force generation and clinical status. Ann Neurol 39(1):79–88

    Article  CAS  PubMed  Google Scholar 

  11. Cutsuridis V (2006a) Biologically inspired neural architectures of voluntary movement in normal and disordered states of the brain. Unpublished PhD dissertation

    Google Scholar 

  12. Cutsuridis V (2006b) Neural model of dopaminergic control of arm movements in Parkinson’s disease bradykinesia. Kolias S, Stafilopatis A, Duch W ICANN 2006: artificial neural networks. LNCS, 4131. Springer, Berlin, 583–591

    Chapter  Google Scholar 

  13. Cutsuridis V (2007) Does reduced spinal reciprocal inhibition lead to cocontraction of antagonist motor units? A modeling study. Int J Neural Syst 17(4):319–327

    Article  PubMed  Google Scholar 

  14. Cutsuridis V (2010a) Neural network modeling of voluntary single joint movement organization. I. Normal conditions. In: Chaovalitwongse WA et al (eds) Computational neuroscience. Springer, New York, pp 181–192

    Chapter  Google Scholar 

  15. Cutsuridis V (2010b) Neural network modeling of voluntary single joint movement organization. II. Parkinson’s disease. In: Chaovalitwongse WA, Pardalos P, Xanthopoulos P (eds) Computational neuroscience. Springer, New York, pp 193–212

    Chapter  Google Scholar 

  16. Cutsuridis V (2011) Origins of a repetitive and co-contractive pattern of muscle activation in Parkinson’s disease. Neural Netw 24:592–601

    Article  PubMed  Google Scholar 

  17. Cutsuridis V (2013a) Bradykinesia models of Parkinson’s disease. Scholarpedia 8(9):30937

    Article  Google Scholar 

  18. Cutsuridis V (2013b) Bradykinesia models. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer, New York

    Google Scholar 

  19. Cutsuridis V (2018) Bradykinesia models. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience, 2nd edn. Springer, New York

    Google Scholar 

  20. Cutsuridis V, Perantonis S (2006) A neural model of Parkinson’s disease bradykinesia. Neural Netw 19(4):354–374

    Article  PubMed  Google Scholar 

  21. Doudet DJ, Gross C, Lebrun-Grandie P, Bioulac B (1985) MPTP primate model of Parkinson’s disease: a mechanographic and electromyographic study. Brain Res 335:194–199

    Article  CAS  PubMed  Google Scholar 

  22. Doudet DJ, Gross C, Arluison M, Bioulac B (1990) Modifications of precentral cortex discharge and EMG activity in monkeys with MPTP induced lesions of DA nigral lesions. Exp Brain Res 80:177–188

    Article  CAS  PubMed  Google Scholar 

  23. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  CAS  PubMed  Google Scholar 

  24. Gibberd FB (1986) The management of Parkinson’s disease. Practitioner 230:139–146

    CAS  PubMed  Google Scholar 

  25. Godaux E, Koulischer D, Jacquy J (1992) Parkinsonian bradykinesia is due to depression in the rate of rise of muscle activity. Ann Neurol 31(1):93–100

    Article  CAS  PubMed  Google Scholar 

  26. Gross C, Feger J, Seal J, Haramburu P, Bioulac B (1983) Neuronal activity of area 4 and movement parameters recorded in trained monkeys after unilateral lesion of the substantia nigra. Exp Brain Res 7:181–193

    Article  Google Scholar 

  27. Hallett M, Khoshbin S (1980) A physiological mechanism of bradykinesia. Brain 103:301–314

    Article  CAS  PubMed  Google Scholar 

  28. Humphrey DR, Reed DJ (1983) Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven Press, New York. 1983

    Google Scholar 

  29. Lazarus JC, Stelmach GE (1992) Inter-limb coordination in Parkinson’s disease. Mov Disord 7:159–170

    Article  CAS  PubMed  Google Scholar 

  30. Rand MK, Stelmach GE, Bloedel JR (2000) Movement accuracy constraints in Parkinson’s disease patients. Neuropsychologia 38:203–212

    Article  CAS  PubMed  Google Scholar 

  31. Tremblay L, Filion M, Bedard PJ (1989) Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism. Brain Res 498(1):17–33

    Article  CAS  PubMed  Google Scholar 

  32. Watts RL, Mandir AS (1992) The role of motor cortex in the pathophysiology of voluntary movement deficits associated with parkinsonism. Neurol Clin 10(2):451–469

    Article  CAS  PubMed  Google Scholar 

  33. Weiner WJ, Singer C (1989) Parkinson’s disease and non-pharmacologic treatment programs. J Am Geriatr Soc 37:359–363

    Article  CAS  PubMed  Google Scholar 

  34. Weiss P, Stelmach GE, Adler CH, Waterman C (1996) Parkinsonian arm movements as altered by task difficulty. Parkinsonism Relat Disord 2(4):215–223

    Article  CAS  PubMed  Google Scholar 

  35. Williams SM, Goldman-Rakic PS (1998) Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 8:321–345

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Cutsuridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cutsuridis, V. (2019). Basal Ganglio-thalamo-cortico-spino-muscular Model of Parkinson’s Disease Bradykinesia. In: Cutsuridis, V. (eds) Multiscale Models of Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-18830-6_4

Download citation

Publish with us

Policies and ethics