Skip to main content

Shaping Brain Rhythms: Dynamic and Control-Theoretic Perspectives on Periodic Brain Stimulation for Treatment of Neurological Disorders

  • Chapter
  • First Online:
Book cover Multiscale Models of Brain Disorders

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 13))

Abstract

Rhythmic, collective activity is a fundamental feature of neural systems. As a result of this, many of the challenges and opportunities involved in developing clinical tools from basic neuroscience knowledge come down to questions about control of dynamic, oscillatory networks. In this chapter we review a range of experimental and theoretical work on control of neural oscillations, in healthy brains and in relation to various clinical conditions. We highlight the main types of qualitative system behaviour that can result from application of periodic stimulation and present a simple case study on this using a mathematical model of rhythmogenesis in thalamocortical circuits. The concepts discussed here may, we hope, help provide some guidelines and principles for the development of future generations of more physiologically and dynamically informed brain stimulation techniques, paradigms, and researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563

    CAS  PubMed Central  Google Scholar 

  2. Hanslmayr S, Matuschek J, Fellner MC (2014) Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation. Curr Biol 24:904–909

    CAS  Google Scholar 

  3. Duarte IC, Castelhano J, Sales F, Castelo-Branco M (2016) The anterior versus posterior hippocampal oscillations debate in human spatial navigation: evidence from an electrocorticographic case study. Brain Behav 6:e00507

    PubMed Central  Google Scholar 

  4. Jacobs J, Korolev IO, Caplan JB, Ekstrom AD, Litt B, Baltuch G, Fried I, Schulze-Bonhage A, Madsen JR, Kahana MJ (2010) Right-lateralized brain oscillations in human spatial navigation. J Cogn Neurosci 22:824–836

    PubMed Central  Google Scholar 

  5. Jadi MP, Sejnowski TJ (2014) Cortical oscillations arise from contextual interactions that regulate sparse coding. Proc Natl Acad Sci 111:6780–6785

    CAS  Google Scholar 

  6. Başar (2012) A review of alpha activity in integrative brain function: Fundamental physiology, sensory coding, cognition and pathology. Int J Psychophysiol 86:1–24

    Google Scholar 

  7. Tallon-Baudry (2003) Oscillatory synchrony and human visual cognition. J Physiol-Paris 97:355–363

    Google Scholar 

  8. Mierau A, Klimesch W, Lefebvre J (2017) State-dependent alpha peak frequency shifts: experimental evidence, potential mechanisms and functional implications. Neuroscience 360:146–154

    CAS  Google Scholar 

  9. Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168

    CAS  Google Scholar 

  10. Vardy AN, van Wegen EE, Kwakkel G, Berendse HW, Beek PJ, Daffertshofer A (2011) Slowing of M1 activity in Parkinson’s disease during rest and movement – an MEG study. Clin Neurophysiol 122:789–795

    Google Scholar 

  11. Demirtaş M, Falcon C, Tucholka A, Gispert JD, Molinuevo JL, Deco G (2017) A whole-brain computational modeling approach to explain the alterations in resting-state functional connectivity during progression of Alzheimer’s disease. Neuroimage: Clin 16:343–354

    Google Scholar 

  12. Assenza G, Capone F, di Biase L, Ferreri F, Florio L, Guerra A, Marano M, Paolucci M, Ranieri F, Salomone G, Tombini M (2017) Oscillatory activities in neurological disorders of elderly: biomarkers to target for neuromodulation. Front Aging Neurosci 9:189

    PubMed Central  Google Scholar 

  13. Kielar A, Deschamps T, Chu RK, Jokel R, Khatamian YB, Chen JJ, Meltzer JA (2016) Identifying dysfunctional cortex: dissociable effects of stroke and aging on resting state dynamics in MEG and fMRI. Front Aging Neurosci 8:40

    PubMed Central  Google Scholar 

  14. Kielar A, Deschamps T, Jokel R, Meltzer JA (2016) Functional reorganization of language networks for semantics and syntax in chronic stroke: evidence from MEG. Hum Brain Mapp 37:2869–2893

    Google Scholar 

  15. Chu RK, Braun AR, Meltzer JA (2015) MEG-based detection and localization of perilesional dysfunction in chronic stroke. Neuroimage: Clin 8:157–169

    Google Scholar 

  16. Oshino S, Kato A, Wakayama A, Taniguchi M, Hirata M, Yoshimine T (2007) Magnetoencephalographic analysis of cortical oscillatory activity in patients with brain tumors: synthetic aperture magnetometry (SAM) functional imaging of delta band activity. Neuroimage 34:957–964

    Google Scholar 

  17. Baayen JC, de Jongh A, Stam CJ, de Munck JC, Jonkman JJ, Trenité DG, Berendse HW, van Walsum AM, Heimans JJ, Puligheddu M, Castelijns JA (2003) Localization of slow wave activity in patients with tumor-associated epilepsy. Brain Topogr 16:85–93

    Google Scholar 

  18. van Wijk BC, Willemse RB, Vandertop WP, Daffertshofer A (2012) Slowing of M1 oscillations in brain tumor patients in resting state and during movement. Clin Neurophysiol 123:2212–2219

    Google Scholar 

  19. Sarnthein J, Jeanmonod D (2008) High thalamocortical theta coherence in patients with neurogenic pain. Neuroimage 39:1910–1917

    Google Scholar 

  20. Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D (2006) Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129:55–66

    Google Scholar 

  21. Romei V, Bauer M, Brooks JL, Economides M, Penny W, Thut G, Driver J, Bestmann S (2016) Causal evidence that intrinsic beta-frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS. Neuroimage 126:120–130

    PubMed Central  Google Scholar 

  22. Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, Sack AT, Miniussi C, Antal A, Siebner HR, Ziemann U, Herrmann C (2017) Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin Neurophysiol 128:843–857

    PubMed Central  Google Scholar 

  23. Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG (2013) Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci 16:3422

    Google Scholar 

  24. Paulus W (2011) Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychol Rehabil 21:602–617

    Google Scholar 

  25. Glannon W (2013) Neuromodulation, agency and autonomy. Brain Topogr 27:46–54

    Google Scholar 

  26. Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG (2005) Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128:490–499

    Google Scholar 

  27. Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5:708–712

    Google Scholar 

  28. Pascual-Leone A, Rubio B, Pallardó F, Catalá MD (1996) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. The Lancet 348:233–237

    CAS  Google Scholar 

  29. Schlaepfer TE, Bewernick BH (2013) Neuromodulation for treatment resistant depression: state of the art and recommendations for clinical and scientific conduct. Brain Topogr 27:12–19

    Google Scholar 

  30. Freitas C, Mondragón-Llorca H, Pascual-Leone A (2011) Noninvasive brain stimulation in Alzheimer’s disease: systematic review and perspectives for the future. Exp Gerontol 46:611–627

    PubMed Central  Google Scholar 

  31. Fried I (2016) Brain stimulation in Alzheimer’s disease. J Alzheimer’s Dis 54(2):789–791

    Google Scholar 

  32. Dinkelbach L, Brambilla M, Manenti R, Brem AK (2017) Non-invasive brain stimulation in Parkinson’s disease: exploiting crossroads of cognition and mood. Neurosci Biobehav Rev 75:407–418

    Google Scholar 

  33. Fridley J, Thomas JG, Navarro JC, Yoshor D (2012) Brain stimulation for the treatment of epilepsy. Neurosurg Focus 32(3):E13

    Google Scholar 

  34. Goodman JH (2004) Brain stimulation as a therapy for epilepsy. Adv Exp Med Biol 548:239–247

    Google Scholar 

  35. Violante IR, Li LM, Carmichael DW, Lorenz R, Leech R, Hampshire A, Rothwell JC, Sharp DJ (2017) Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. eLife 6:e2201

    Google Scholar 

  36. Reato D, Rahman A, Bikson M, Parra LC (2013) Effects of weak transcranial alternating current stimulation on brain activity – a review of known mechanisms from animal studies. Front Hum Neurosci 7:687

    PubMed Central  Google Scholar 

  37. Manola L, Holsheimer J, Veltink P, Buitenweg JR (2007) Anodal vs cathodal stimulation of motor cortex: a modeling study. Clin Neurophysiol 118:464–474

    Google Scholar 

  38. Łȩski S, Lindén H, Tetzlaff T, Pettersen KH, Einevoll GT (2013) Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput Biol 9:e1003137

    Google Scholar 

  39. Schiff ND (2010) Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 33:1–9

    CAS  PubMed Central  Google Scholar 

  40. Schmidt SL, Iyengar AK, Foulser AA, Boyle MR, Fröhlich F (2014) Endogenous cortical oscillations constrain neuromodulation by weak electric fields. Brain Stimul 7:878–889

    PubMed Central  Google Scholar 

  41. Lindén H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comput Neurosci 29:423–444

    Google Scholar 

  42. Radman T, Su Y, An JH, Parra LC, Bikson M (2007) Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci 2:3030–3036

    Google Scholar 

  43. Bastos AM, Litvak V, Moran R, Bosman CA, Fries P, Friston KJ (2015) A DCM study of spectral asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the monkey. Neuroimage 108:460–475

    CAS  PubMed Central  Google Scholar 

  44. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical microcircuits for predictive coding. Neuron 76:695–711

    CAS  PubMed Central  Google Scholar 

  45. Cecere R, Rees G, Romei V (2015) Individual differences in alpha frequency drive crossmodal illusory perception. Curr Biol 25:231–235

    CAS  PubMed Central  Google Scholar 

  46. Cecere R, Romei V, Bertini C, Làdavas E (2014) Crossmodal enhancement of visual orientation discrimination by looming sounds requires functional activation of primary visual areas: a case study. Neuropsychologia 56:350–358

    Google Scholar 

  47. Ali MM, Sellers KK, Fröhlich F (2013) Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci 33:11262–11275

    CAS  PubMed Central  Google Scholar 

  48. Herrmann CS, Murray MM, Ionta S, Hutt A, Lefebvre J (2016) Shaping intrinsic neural oscillations with periodic stimulation. J Neurosci 36:5328–5337

    CAS  PubMed Central  Google Scholar 

  49. Chaudhuri R, Knoblauch K, Gariel MA, Kennedy H, Wang XJ (2015) A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88:419–431

    CAS  PubMed Central  Google Scholar 

  50. Chaudhuri R, Bernacchia A, Wang XJ (2014) A diversity of localized timescales in network activity. eLife 3:e01239

    PubMed Central  Google Scholar 

  51. Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, Corbetta M (2013) Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J Neurosci 33:11239–11252

    CAS  PubMed Central  Google Scholar 

  52. Stefanescu RA, Jirsa VK (2008) A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons. PLoS Comput Biol 4:31000219

    Google Scholar 

  53. Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12:1–24

    CAS  PubMed Central  Google Scholar 

  54. Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73:357–366

    CAS  Google Scholar 

  55. Valdes PA, Jiménez JC, Riera J, Biscay R, Ozaki T (1999) Nonlinear EEG analysis based on a neural mass model. Biol Cybern 81:415–424

    CAS  Google Scholar 

  56. Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH (1974) Model of brain rhythmic activity. Kybernetik 15:27–37

    CAS  Google Scholar 

  57. Spiegler A, Knösche TR, Schwab K, Haueisen J, Atay FM (2011) Modeling brain resonance phenomena using a neural mass model. PLoS Comput Biol 7:e1002298

    CAS  PubMed Central  Google Scholar 

  58. Kunze T, Hunold A, Haueisen J, Jirsa V, Spiegler A (2016) Transcranial direct current stimulation changes resting state functional connectivity: a large-scale brain network modeling study. Neuroimage 140:174–187

    Google Scholar 

  59. Cona F, Lacanna M, Ursino M (2014) A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep. J Comput Neurosci 37:125–148

    CAS  Google Scholar 

  60. Cona F, Zavaglia M, Massimini M, Rosanova M, Ursino M (2011) A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEG. Neuroimage 57:1045–1058

    CAS  Google Scholar 

  61. Lefebvre J, Hutt A, Fröhlich F (2017) Stochastic resonance mediates the state-dependent effect of periodic stimulation on cortical alpha oscillations. eLife 6:e32054

    PubMed Central  Google Scholar 

  62. Alagapan S, Schmidt SL, Lefebvre J, Hadar E, Shin HW, Fröhlich F (2016) Modulation of cortical oscillations by low-frequency direct cortical stimulation is state-dependent. PLOS Biol 14:e1002424

    PubMed Central  Google Scholar 

  63. Spiegler A, Hansen EC, Bernard C, McIntosh AR, Jirsa VK (2016) Selective activation of resting-state networks following focal stimulation in a connectome-based network model of the human brain. eNeuro:3

    Google Scholar 

  64. Proix T, Spiegler A, Schirner M, Rothmeier S, Ritter P, Jirsa VK (2016) How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models? Neuroimage 142:135–149

    Google Scholar 

  65. Deco G, Hagmann P, Hudetz AG, Tononi G (2013) Modeling resting-state functional networks when the cortex falls asleep: local and global changes. Cereb Cortex 24:3180–3194

    PubMed Central  Google Scholar 

  66. Deco G, Senden M, Jirsa V (2012) How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model. Front Comput Neurosci 6:68

    PubMed Central  Google Scholar 

  67. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53:63–88

    Google Scholar 

  68. Klimesch W, Hanslmayr S, Sauseng P, Gruber WR, Doppelmayr M (2007) P1 and traveling alpha waves: evidence for evoked oscillations. J Neurophysiol 97:1311–1318

    Google Scholar 

  69. Hughes SW, Crunelli V (2005) Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neurosci 11:357–372

    Google Scholar 

  70. Hughes SW, Lõrincz M, Cope DW, Blethyn KL, Kékesi KA, Parri HR, Juhász G, Crunelli V (2004) Synchronized oscillations at α and θ frequencies in the lateral geniculate nucleus. Neuron 42:253–268

    CAS  Google Scholar 

  71. Lõrincz ML, Kékesi KA, Juhász G, Crunelli V, Hughes SW (2009) Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron 63:683–696

    PubMed Central  Google Scholar 

  72. Rennie CJ, Robinson PA, Wright J (2002) Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern 86:457–471

    CAS  Google Scholar 

  73. Robinson PA, Rennie CJ, Wright JJ, Bahramali H, Gordon E, Rowe DL (2001) Prediction of electroencephalographic spectra from neurophysiology. Phys Rev E 63:021903

    CAS  Google Scholar 

  74. Robinson PA, Rennie CJ, Wright JJ (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56:826–840

    CAS  Google Scholar 

  75. Robinson PA, Rennie CJ, Rowe DL, O’Connor SC, Gordon E (2005) Multiscale brain modelling. Philos Trans R Soc B: Biol Sci 360:1043–1050

    CAS  Google Scholar 

  76. Victor JD, Drover JD, Conte MM, Schiff ND (2011) Mean-field modeling of thalamocortical dynamics and a model-driven approach to EEG analysis. Proc Natl Acad Sci 108:15631–15638

    CAS  Google Scholar 

  77. Berger H (1933) Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten 98:231–254

    Google Scholar 

  78. Supp GG, Siegel M, Hipp JF, Engel AK (2011) Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Curr Biol 21:1988–1993

    CAS  Google Scholar 

  79. Notbohm A, Kurths J, Herrmann CS (2016) Modification of brain oscillations via rhythmic light stimulation provides evidence for entrainment but not for superposition of event-related responses. Front Hum Neurosci 10:10

    PubMed Central  Google Scholar 

  80. Ritter P, Schirner M, McIntosh AR, Jirsa VK (2013) The virtual brain integrates computational modeling and multimodal neuroimaging. Brain Connect 3:121–145

    PubMed Central  Google Scholar 

  81. Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK (2015) Mathematical framework for large-scale brain network modeling in the virtual brain. Neuroimage 111:385–430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Griffiths .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Griffiths, J.D., Lefebvre, J.R. (2019). Shaping Brain Rhythms: Dynamic and Control-Theoretic Perspectives on Periodic Brain Stimulation for Treatment of Neurological Disorders. In: Cutsuridis, V. (eds) Multiscale Models of Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-18830-6_18

Download citation

Publish with us

Policies and ethics