Skip to main content

How Can Computer Modelling Help in Understanding the Dynamics of Absence Epilepsy?

  • Chapter
  • First Online:
Multiscale Models of Brain Disorders

Abstract

An overview of the pathophysiology of absence seizures is given, focusing on computational modelling where recent neurophysiological experimental evidence is incorporated. The main question addressed is what is the dynamical process by which the same brain can produce sustained bursts of synchronous spike-and-wave discharges (SWDs) and normal, largely desynchronized brain activity, i.e. to display bistability. This generic concept, tested on an updated neural mass computational model of absence seizures, predicts certain properties of the probability distributions of inter-ictal intervals and of the durations of ictal events. A critical analysis of the distributions predicted by the model and those found in reality led to adjustments of the model with respect to the control of the duration of ictal events. Another prediction derived from the bistable dynamics, the possibility of aborting absence seizures by means of counter-controlled electrical stimulation, is also discussed in the light of current experimental studies. Finally the most recent update of the model was carried out to account for the particular properties of the cortical “driver” of SWDs, and the underlying putative role of the persistent Na+ current of cortical neurons in this process.

What I cannot create, I do not understand

Richard Feynman

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avoli M (2012) A brief history on the oscillating roles of thalamus and cortex in absence seizures. Epilepsia 53(5):779–789

    Article  PubMed  PubMed Central  Google Scholar 

  2. Berényi A, Belluscio M, Mao D, Buzsáki G (2012) Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337:735–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blumenfeld H, Klein JK, Schridde U, Vestal M, Rice T, Khera DS, Bashyal C, Giblin K, Paul-Laughinghouse C, Wang F, Phadke A, Mission J, Agarwal RK, Englot DJ, Motelow J, Nerseyan H, Waxman SG, Levin AR (2008) Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia 49(3):400–409

    Article  CAS  PubMed  Google Scholar 

  4. Bouwman BM, Suffczynski P, Midzyanovskaya IS, Matis E, van den Broek PLC, van Rijn CM (2007) The effects of vigabatrin on spike and wave discharges in WAG/Rij rats. Epilepsy Res 76:34–40

    Article  CAS  PubMed  Google Scholar 

  5. Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA (2006) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16:1296–1313

    Article  CAS  PubMed  Google Scholar 

  6. Chipaux M, Charpier S, Polack PO (2011) Chloride-mediated inhibition of the ictogenic neurons initiating genetically-determined absence seizures. Neuroscience 192:642–651

    Article  CAS  PubMed  Google Scholar 

  7. Destexhe A, Contreras D, Steriade M (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol 79:999–1016. [PubMed: 9463458]

    Article  CAS  PubMed  Google Scholar 

  8. Destexhe A, Sejnowski TJ (2003) Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 83:1401–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dezsi G, Ozturk E, Stanic D, Powell KL, Blumenfeld H, O’Brien TJ, Jones NC (2013) Ethosuximide reduces epileptogenesis and behavioral comorbidity in the GAERS model of genetic generalized epilepsy. Epilepsia 54(4):635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feynman, R Wikiquote

    Google Scholar 

  11. Gerstein GL, Mandelbrot B (1964) Random walk models for the spike activity of a single neurons. Biophys J 4:41–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goodfellow M, Schindler K, Baier G (2011) Intermittent spike-wave dynamics in a heterogeneous, spatially extended neural mass model. NeuroImage 55(3):920–932

    Article  PubMed  Google Scholar 

  13. Johnston D, Wu SMS (1995) Foundations of cellular neurophysiology. The MIT Press, Cambridge, MA

    Google Scholar 

  14. Klein JP, Khera DS, Nersesyan H, Kimchi EY, Waxman SG, Blumenfeld H (2004) Dysregulation of sodium channel expression in cortical neurons in a rodent model of absence epilepsy. Brain Res 1000:102–109

    Article  CAS  PubMed  Google Scholar 

  15. Koppert MMJ, Kalitzin SN, Lopes da Silva FH, Viergever MA (2011) Plasticity-modulated seizure dynamics for seizure termination in realistic neuronal models. J Neural Eng 8:1–11

    Article  Google Scholar 

  16. Koppert MMJ, Kalitzin SN, Velis D, Lopes da Silva FH, Viergever MA (2013) Reactive control of epileptiform discharges in realistic computational neuronal models with bistability. Int J Neural Syst 23(1). (No 1230032)):1–10

    Article  Google Scholar 

  17. Kozák G, Berenyi A (2017) Sustained efficacy of closed loop electrical stimulation for long-term treatment of absence epilepsy in rats. Sci Rep 7(6300):1–9

    Google Scholar 

  18. Leresche N, Parri HR, Erdemli G, Guyon A, Turner JP, Williams SR, Asprodini E, Crunelli V (1998) On the action of the anti-absence drug ethosuximide in the rat and cat thalamus. J Neurosci 18:4842–4853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lopes da Silva FH, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN (2003) Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Trans Biomed Eng 50(5):540–548

    Article  PubMed  Google Scholar 

  20. Lopes da Silva FH et al (2003) Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44(Suppl. 12):72–83

    Article  PubMed  Google Scholar 

  21. Lüttjohann A, van Luijtelaar G (2013) Thalamic stimulation in absence epilepsy. Epilepsy Res 106:136–145

    Article  PubMed  Google Scholar 

  22. Lytton WW (2008) Computer modeling of epilepsy. Nat Rev Neurosci 9:626–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lytton WW, Contreras D, Destexhe A, Steriade M (1997) Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J Neurophysiol 77:1676–1696

    Google Scholar 

  24. Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Sci New Ser 197(4300):287–289

    CAS  Google Scholar 

  25. Mackey MC, Milton JM (1987) Dynamical diseases. Ann N Y Acad Sci 504:16–32

    Article  CAS  PubMed  Google Scholar 

  26. Manning JPA, Richards DA, Leresche N, Crunelli V, Bowery NG (2004) Cortical-area-specific block of genetically determined absence seizures by ethosuximide. Neuroscience 123:5–9

    Article  CAS  PubMed  Google Scholar 

  27. Marten F, Rodrigues S, Suffczynski P, Richardson MP, Terry JR (2009) Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics. Phys Rev E 79(2 Pt 1):021911

    Article  CAS  Google Scholar 

  28. Meeren HK, Pijn JP, Van Luijtelaar EL, Coenen AM, Lopes da Silva FH (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22:1480–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meeren H, van Luijtelaar G, Lopes da Silva F, Coenen A (2005) Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol 62:371–376

    Article  PubMed  Google Scholar 

  30. Milton J, Jianhong W, Campbell SA, Bélair J (2017) Outgrowing neurological diseases: microcircuits, conduction delay and childhood absence epilepsy. In: Érdi P, Sen Bhattacharya B, Cochran AL (eds) Computational neurology and psychiatry. Springer International Publishing, Cham, pp 11–47

    Chapter  Google Scholar 

  31. Osorio I, Frei MG (2009) Seizure abatement with single dc pulses: is phase resetting at play? Int J Neural Syst 19(3):149–156

    Article  PubMed  Google Scholar 

  32. Paz JT, Huguenard JR (2015) Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci 18:351–359.

    Google Scholar 

  33. Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65:041924

    Article  CAS  Google Scholar 

  34. Polack PO, Guillemain I, Hu E, Deransart C, Depaulis A, Charpier S (2007) Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures. J Neurosci 27:6590–6599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rajna P, Lona C (1989) Sensory stimulation for inhibition of epileptic seizures. Epilepsia 30:168–174

    Article  CAS  PubMed  Google Scholar 

  36. Sorokin JM, Davidson TJ, Frechette E, Abramian AM, Deisseroth K, Huguenard JR, Paz JT (2017) Bidirectionsl control of generalized epilepsy networks via rapid real-time switching of firing mode. Neuron 93:149–210

    Article  CAS  Google Scholar 

  37. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    Article  CAS  PubMed  Google Scholar 

  38. Suffczynski P, Kalitzin SN, Lopes da Silva FH (2004) Dynamics of nonconvulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126:467–484

    Article  CAS  PubMed  Google Scholar 

  39. Suffczynski P, Lopes da Silva FH, Parra J, Velis DN, Bouwman BM, van Rijn CM, van Hese P, Boon P, Khosravani H, Derchansky M, Carlen P, Kalitzin SN (2006) Dynamics of epileptic phenomena determined from statistics of ictal transitions. IEEE Trans Bio Med Eng 53(3):524–532

    Article  Google Scholar 

  40. Van Heukelum S, Kelderhuis J, Janssen P, van Luijtelaar G, Lüttjohann A (2016) Timing of high-frequency stimulation in a genetic absence model. Neuroscience 324:191–201

    Article  CAS  PubMed  Google Scholar 

  41. Wang XJ (1994) Multiple dynamical modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking. Neuroscience 59:21–31

    Article  CAS  PubMed  Google Scholar 

  42. Williams MS, Altwegg-Boussac T, Chavez M, Lecas S, Mahon S, Charpier S (2016) Integrative properties and transfer function of cortical neurons initiating s=absence seizures in a rat genetic model. J Physiol 594(22):6733–6751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12:121–124

    Google Scholar 

  44. Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur J Neurosci 15:1499–1508

    Article  CAS  PubMed  Google Scholar 

  45. Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F (2005) Interictal to ictal transition in human temporal lobe epilepsy; insights from a computational model of intracerebral EEG. J Clin Neurophysiol 22:343–356

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Suffczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suffczynski, P., Kalitzin, S., Lopes da Silva, F.H. (2019). How Can Computer Modelling Help in Understanding the Dynamics of Absence Epilepsy?. In: Cutsuridis, V. (eds) Multiscale Models of Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-18830-6_16

Download citation

Publish with us

Policies and ethics