Skip to main content

Wind Meteorology, Micrometeorology and Climatology

  • Chapter
  • First Online:
Wind Science and Engineering

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

Abstract

This chapter addresses wind knowledge between the late nineteenth century and the first half of the twentieth century. First, it examines the evolution of ground-level and upper air measurements, emphasising the revolution related to the appearance of remote monitoring. It then discusses the understanding and forecasting of circulation phenomena on a planetary scale, highlighting the dualism between the deterministic and probabilistic view, and the genesis of wind classification, underlining the existence of various phenomena with different space and timescales. Later on, it addresses the growing importance given to the physical processes that occur in the thin atmospheric belt in contact with the Earth surface, which originated micrometeorology and the two turbulence representations that arose in this period: the phenomenological and the statistical theory. In turn, they produced the first models of the wind speed close to the ground that took place through a mixture interfacing theory, experience and empiricism. Finally, this chapter addresses wind climatology and the first distributions of the wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Appleton’s discovery was exceptional. Since electromagnetic waves travel in a straight line through Earth’s atmosphere, the long-range transmission of radio waves is prevented by the curvature of the Earth surface. This was the reason why Marconi used kites for his first transatlantic transmission. This limit was overcome thanks to the ionosphere property to reflect long waves. Short waves, that are not reflected, can only be transmitted at short ranges.

  2. 2.

    In 1916, when his treatise was nearly completed, Richardson sensed the need to make an example. He worked on it from 1916 to 1919. Being a conscientious objector, he refrained from carrying out military service, and in this period, he divided his time between forecasts and the aid to soldiers.

  3. 3.

    Reporting Richardson’s words [70]: “After so much hard reasoning, may one play with a fantasy? Imagine a large hall like a theatre, except that the circles and galleries go right round through the space usually occupied by the stage. The walls of this chamber are painted to form a map of the globe. The ceiling represents the north Polar Regions, England is in the gallery, the tropics in the upper circle, Australia on the dress circle and the Antarctic in the pit. A myriad computers are at work upon the weather of the part of the map where each sits, but each computer attends only to one equation or part of an equation. The work of each region is coordinated by an official of higher rank. Numerous little ‘night signs’ display the instantaneous values so that neighbouring computers can read them. Each number is thus displayed in three adjacent zones so as to maintain communication to the North and South on the map. From the floor of the pit a tall pillar rises to half the height of the hall. It carries a large pulpit on its top. In this sits the man in charge of the whole theatre; he is surrounded by several assistants and messengers. One of his duties is to maintain a uniform speed of progress in all parts of the globe. In this respect he is like the conductor of an orchestra in which the instruments are slide-rules and calculating machines. But instead of waving a baton he turns a beam of rosy light upon any region that is running ahead of the rest, and a beam of blue light upon those who are behindhand. Four senior clerks in the central pulpit are collecting the future weather as fast as it is being computed, and despatching it by pneumatic carrier to a quiet room. There it will be coded and telephoned to the radio transmitting station. Messengers carry piles of used computing forms down to a storehouse in the cellar. In a neighbouring building there is a research department, where they invent improvements. But these is much experimenting on a small scale before any change is made in the complex routine of the computing theatre. In a basement an enthusiast is observing eddies in the liquid lining of a huge spinning bowl, but so far the arithmetic proves the better way. In another building are all the usual financial, correspondence and administrative offices. Outside are playing fields, houses, mountains and lakes, for it was thought that those who compute the weather should breathe of it freely”. Here, “computer” and “calculator” are used with the meaning of “people performing calculations”.

  4. 4.

    Charney’s model represented the slow and low-frequency motions, removing gravity waves and fast, high-frequency acoustic waves. It can then be interpreted as a low-pass filter. Many consider this model one of the most prominent twentieth century contributions to atmospheric and oceanographic sciences.

  5. 5.

    The butterfly effect is a poetic expression introduced in literary grounds by Jacques Salomon Hadamard (1865–1963) in 1890 and divulged by Pierre Maurice Marie Duhem (1861–1916) in 1906. The idea of the possible consequences of the flap of a butterfly’s wings appeared in a story published by Ray Bradbury (1920–2012) in 1952, A sound of thunder, in which a butterfly living in the time of dinosaurs had an essential role in the development of the English language and in a political election. Commenting his 1961 numerical forecasts, Lorenz [96] noted that “one meteorologist remarked that if the theory were correct, one flap of a seagull’s wings could change the course of weather forever”. In his subsequent writings and lectures, he replaced the seagull with the more poetical butterfly. The title of a conference he held in 1972 at the 139th Convention of the American Association for the Advancement of Science, Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas, was selected by the conference organisers since he forgot to provide it.

  6. 6.

    Sir William Napier Shaw’s suggested Jeffreys to formulate a quantitative theory on katabatic winds. Jeffreys understood it was first necessary to clarify how they differed from other winds, but no framing of various wind types existed. He then devoted himself to wind classification.

  7. 7.

    According to Depperman, a mature tropical cyclone consists of four zones: (1) an external region with wind speed increasing towards the interior and limited convection; (2) a belt, in the internal portion of which the wind reaches hurricane intensity, with gale lines and intense convection; (3) a ring that is the seat of strong precipitations, gales and maximum speed; (4) the eye, inside of which a quick drop of the speed takes place in the direction of the centre.

  8. 8.

    In America, a tropical cyclone is defined as a hurricane when the wind speed reaches 100 km/h.

  9. 9.

    In 1910, Simpson was the meteorologist of Robert Falcon Scott’s (1868–1912) “Terra Nova” Antarctic expedition. In his role of director of the U.K. Meteorological Office, he generalised the use of the Beaufort scale from the sea to the mainland (Sect. 4.3). He also proposed an amendment of the Beaufort scale, known as the Simpson scale, to define wind strength. The Saffir–Simpson scale, which defines the intensity of hurricanes (the scale ranges from 1 to 5, and the 5° corresponds to hurricanes with wind speed exceeding 249 km/h), was developed in 1971 and applied from 1973.

  10. 10.

    During the Second World War, researches were carried out on flight in adverse weather. Despite this, towards the end of the war a phenomenon that caused several accidents in aviation was still mostly unknown: the thunderstorm. Many research projects were then arranged, the importance of which was highlighted by the American Airlines with a letter they sent to the Civil Aeronautics Board in 1943. That was the origin of many initiatives leading, in early 1945, to a large project on thunderstorms that commanded for peaceful purposes many aircrafts and equipment used for military purposes.

  11. 11.

    Atmospheric convection is like the one that occurs in a fluid layer made unstable by the addition or subtraction of energy in a limited area. It was reproduced in a laboratory for the first time by Henri Bénard (1874–1939) in 1901 [125]. He prepared a fluid layer, 1 mm thick, on a metal plate heated to uniform temperature. The upper layer was free and in contact with air at lower temperature. This led to the formation of many vortex cells, which created updrafts in the centre of the cells and downdrafts at the interface between adjacent cells. Taking his cue from this study, in 1916 Lord Rayleigh reproduced theoretically Benard’s experiments [126]. He imposed a small disturbance at the base of a resting layer of liquid, heated from below, disintegrating it into vortex cells. He thus proved that the convective instability of a fluid layer between two horizontal planes was governed by its vertical thermal gradient.

  12. 12.

    The squall line is a line of thunderstorm cells or strong winds due to instability. They are short-lived, are accompanied by thunder, lightning and precipitations, occur along the front of a cyclone. In 1950, Tepper [127] explained that first a sudden increase of the surface pressure occurs. Then, a quick wind shift occurs followed by a temperature break and gusty winds, the start of rainfall and the pressure maximum. All happens in a few minutes.

  13. 13.

    In 1976, Fujita will define the “downburst” as a downdraft dangerous for airport operations.

  14. 14.

    The term “katabatic” (from the Greek “katabatikos”, “running downhill”) is currently used only for the winds cooler than the surrounding air.

  15. 15.

    In Italian, the Foehn is called “favonio”, the Latin “favonius” the Roman used to call the west wind. This wind is called zonda in Argentina, chinook in the Rocky Mountains, devil’s wind in San Francisco, Santa Ana wind in Southern California, sharav or hamsin in Israel, hamsin in Arabia, Nor’wester in Christchurch, New Zealand, Halny in the Carpathians, Samul on the Iranian mountains in Kurdistan, Bohorok in Sumatra.

  16. 16.

    The cold version of the katabatic wind occurs in many other areas worldwide, like Japan, where it is known as Oroshi, and in Novorossiysk, where the bora reaches the northern coast of the Black Sea coming from Caucasus.

  17. 17.

    In 1963, Smagorinsky published a revolutionary paper [181]. He included wind speed, atmospheric pressure, Earth and Sun radiation, cloud cover and precipitations among the variables of the primitive equations, taking into account the turbulence that develops on scales smaller than the grid size of the numerical model. This conception, developed by Douglas Lilly (1936–1998) between 1966 and 1967, originated the Smagorinsky–Lilly model. It represents a cornerstone of the large eddy simulation (LES) and of the future developments of computational fluid dynamics (CFD) (Chap. 11).

  18. 18.

    During tests with pilot balloons on the Salisbury Plain, Taylor proved that the eddy viscosity coefficient is 100.000 times greater than the kinematic viscosity molecular coefficient: turbulent friction, then, surpassed molecular friction up to make it evanescent. He would carry out new tests on the Eiffel Tower [68].

  19. 19.

    In 1916, Sir Napier Shaw first called “geostrophic” the wind speed due to the balance between the Coriolis’ force and the pressure gradient, ignoring the centrifugal force due to the curvature of isobars. In other words, the geostrophic speed is the gradient speed assuming that isobars are straight lines.

  20. 20.

    Taylor did not mention Prandtl and Ekman probably due to closeness of their papers and to the different fields in which they were published: Prandtl’s theory appeared in German language, in an applied mathematics and fluid mechanics environment; Ekman’s one was set in oceanography.

  21. 21.

    Comparing Taylor’s Eq. (6.30) obtained in atmospheric sciences with Eqs. (5.14) and (5.21) introduced by Blasius and Prandtl in fluid dynamics, the k coefficient is equal to half the CD drag coefficient.

  22. 22.

    Consider a unit air mass in vertical hydrostatic balance (Eq. 6.5). The position of the mass is defined as fundamental. Any other position obtained by applying a vertical translation is defined as varied. If the mass remains in equilibrium in the varied position, the equilibrium is neutral. Otherwise, it is stable or unstable, according to whether the mass tends to return to the fundamental position or to leave it.

  23. 23.

    The vertical motion of air masses is called convective. Thermal or natural convection refers to motions occurring when an air mass is lighter or heavier than the surrounding air; this is usually due to atmospheric warming or cooling phenomena. Mechanical or forced convection identifies motions induced by obstacles on the Earth surface; on flat ground, it identifies with the vertical turbulence components caused by the frictions exerted by the Earth surface.

  24. 24.

    Under dry air conditions, the potential temperature θ is linked to the absolute temperature T through Eq. (3.32). All the considerations made here and in Sect. 3.7 can be extended to the wet case by replacing θ with its virtual value θv θ (1 + 0.61q), q being the specific humidity of air.

  25. 25.

    Differentiating both members of Eq. (3.32) with respect to z and applying Eq. (6.5):

    $$ \displaystyle\frac{T}{\uptheta }\displaystyle\frac{{\partial {\overline{\uptheta }}}}{\partial z} = \displaystyle\frac{{\partial \overline{T}}}{\partial z} + \displaystyle\frac{g}{{c_{p} }} $$

    From here, it is possible to infer that the three situations where \( \partial \overline{\uptheta }/\partial z \) is smaller, greater or equal to zero match the three cases where Γ > Γa (unstable equilibrium), Γ < Γa (stable equilibrium) and Γ = Γa (neutral equilibrium), where \( {\varGamma } = - \partial \overline{T}/\partial z \) and Γa = g/cp are defined as lapse rate and adiabatic lapse rate, respectively. The \( \partial \overline{T}/\partial z = - g/c_{p} \) condition corresponds to an adiabatic state. Temperature inversion is defined as an atmospheric stability condition so strong to originate a positive gradient of the absolute temperature; it can be especially detrimental to the dispersion of pollutants (Sect. 8.2).

  26. 26.

    In the light of current knowledge, Ric ≈ 0.20–0.25. There are cases in which Ric ≈ 1.

  27. 27.

    Atmosphere is considered neutral when the mean wind speed at 10 m height is greater than 10 m/s. Often, almost neutral conditions hold for lower speeds.

  28. 28.

    The distribution changed if the measurement point was downstream a bar or a gap of the grid.

  29. 29.

    The Rossby number is defined as \( Ro = V/(Lf), \) V and L being a speed and a length, f the Coriolis parameter. Ro is the ratio of the centrifugal acceleration to the Coriolis’ one. When Ro is small, the Coriolis force dominates (e.g. in cyclones); when Ro is large, the Coriolis force is negligible (e.g. in tornadoes).

  30. 30.

    Applying the isotropy turbulence hypothesis, \( \sigma_{u} = \sigma_{v} = \sigma_{w} = \sigma ;\overline{{u^{\prime } v^{\prime } }} = \overline{{u^{\prime } w^{\prime } }} = \overline{{v^{\prime } w^{\prime } }} = 0 \). This result is not realistic near the ground.

  31. 31.

    Waiting for the fast Fourier transform (FFT), introduced by Cooley and Tukey [285] in 1965, in the 1950s, the spectral analysis was carried out through four techniques [284]: (a) harmonic analysis; (b) numerical filtering; (c) electrical filtering; (d) Fourier transform of the auto-correlogram of the recording.

  32. 32.

    Applying the isotropy turbulence hypothesis:

    $$ L_{xu} = L_{yv} = L_{zw} = L_{f} = \int\limits_{0}^{\infty } {f\left( r \right)\text{d}r} ;L_{xv} = L_{xw} = L_{yu} = L_{yw} = L_{zu} = L_{zv} = L_{g} = \int\limits_{0}^{\infty } {g\left( r \right)\text{d}r} $$

    where f and g are the functions in Eqs. (6.55) and (6.56). The experimental results prove that these expressions cannot be applied near the ground.

  33. 33.

    Today, it is well known that Lxu > Lyu ≈ Lzu [238].

  34. 34.

    Applying the isotropy turbulence hypothesis:

    $$ S_{vv} \left( n \right) = S_{ww} \left( n \right) = \frac{1}{2}S_{uu} \left( n \right) - \frac{n}{2}\frac{{\text{d}S_{uu} \left( n \right)}}{{\text{d}n}};\;S_{uv} \left( n \right) = S_{uw} \left( n \right) = S_{vw} \left( n \right) = 0 $$

    Panofsky’s and McCormick results proved that these expressions are inapplicable near the ground.

  35. 35.

    According to Davenport [298], the spectral gap is clear for strong winds, blurred for unstable phenomena.

  36. 36.

    Equation (6.105) does not explicitly appear in [312]; it can however be inferred from the adopted procedure. Moreover, no reference is present to the exceedance probability of \( \overline{V}_{\text{M}} \left( {T,\uptau } \right) \), which defines \( g_{\text{V}} \left( {T,\uptau } \right) \).

References

  1. Handbook of meteorological instruments. Part I: Instruments for surface observation. Meteorological Office, Her Majesty’s Stationery Office, London, 1953

    Google Scholar 

  2. Middleton WEK (1969) Invention of meteorological instruments. The Johns Hopkins Press, Baltimore

    Google Scholar 

  3. Wyngaard JC (1981) Cup, propeller, vane and sonic anemometers in turbulence research. Annu Rev Fluid Mech 13:399–423

    Article  Google Scholar 

  4. Patterson J (1926) The cup anemometer. Trans Roy Soc Canada, Ser III 20:1–54

    Google Scholar 

  5. Schrenk O (1929) Über die trägheitsfehler des schalenkreuz-anemometers beischwankender windstärke. Z Tech Phys, Berlin 10:57–66

    Google Scholar 

  6. Deacon EL (1951) The over-estimation error of cup anemometers in fluctuating winds. J Sci Instrum, London 28:231–234

    Google Scholar 

  7. Ower E (1949) The measurement of air flow. Chapman and Hall, London

    MATH  Google Scholar 

  8. Sachs P (1972) Wind forces in engineering. Pergamon Press, Oxford

    Google Scholar 

  9. Sanuki M, Kimura S, Tsunda N (1951) Studies on biplane wind vanes, ventilator tubes and cup anemometers. Pap Met Geophys, Tokyo, 2:317–333

    Google Scholar 

  10. Aynsley RM, Melbourne W, Vickery BJ (1977) Architectural aerodynamics. Applied science publishers, London

    Google Scholar 

  11. Hardy R, Wright P, Gribbin J, Kington J (1982) The weather book. Harrow House, U.K.

    Google Scholar 

  12. Giblett MA (1932) The structure of wind over level country. Geophys Mem, London 6:54

    Google Scholar 

  13. Sherlock RH, Stout MB (1931) An anemometer for a study of wind gusts. Bull Dep Eng Res, Univ Mich, Ann Arbor Mich 20

    Google Scholar 

  14. Rosenbrock HH, Tagg JR (1951) Wind and gust-measuring instruments. Proc IEE, Paper 1065

    Google Scholar 

  15. Rouse H, Ince S (1954–1956). History of hydraulics. Series of Supplements to La Houille Blanche. Iowa Institute of Hydraulic Research, State University of Iowa

    Google Scholar 

  16. King LV (1914) On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Phil Trans London A 214:373–432

    Article  Google Scholar 

  17. Dryden HL, Kuethe AM (1929) The measurement of fluctuations of air speed by the hot-wire anemometer. N.A.C.A. Report 320, Washington, D.C.

    Google Scholar 

  18. Simmons LFG (1949) A shielded hot-wire anemometer for low speeds. J Sci Instrum London 26:407–411

    Article  Google Scholar 

  19. Hart C (1967) Kites. An historical survey. Frederick Praeger, New York

    Google Scholar 

  20. Yolan W (1976) The complete book of kites and kite flying. Simon & Schuster, New York

    Google Scholar 

  21. Handbook of meteorological instruments. Part II: Instruments for upper air observations, Meteorological Office, London, Her Majesty’s Stationery Office, 1961

    Google Scholar 

  22. Cave CJP (1947) The great days of kite flying. Weather 2:134–136

    Article  Google Scholar 

  23. Schreiber P (1886) Bestimmung der bewegung eines luftballons durch trigonometrische messungen von zwei standpunkte. Meteorol Z 3:341

    Google Scholar 

  24. Archibald ED (1882–1883) On the use of kites for meteorological observation. Q J Roy Meteorol Soc 9:62

    Google Scholar 

  25. Archibald ED (1883) Mr. Stevenson’s observations on the increase of the velocity of the wind with the altitude. Nature 29:506–507

    Article  Google Scholar 

  26. Lloyd A, Thomas N (1978) Kites and kite flying. Hamly, London

    Google Scholar 

  27. Sorbjan Z (1996) Hands-on meteorology. American Meteorology Society, Boston, MA

    Google Scholar 

  28. Palmieri S (2000) Il mistero del tempo e del clima: La storia, lo sviluppo, il futuro. CUEN, Naples

    Google Scholar 

  29. Dines WH (1906) Two new light meteorographs for use with unmanned balloons. Symon’s Met Mag, London 41:101

    Google Scholar 

  30. Dines WH (1904) A new meteograph for kites. Symon’s Met Mag, London 39:109

    Google Scholar 

  31. de Quervain A (1906) Über die bestimmung atmosphärischen strömungen durch registrier-und pilotballons. Meteor Z 23:149–152

    Google Scholar 

  32. Riabouchinsky D (1906–1909) Bulletin of the Institute Aerodynamique de Koutchino. Moscow

    Google Scholar 

  33. Douglas CKM (1916) Weather observations from an aeroplane. F Scot Met Soc, Edinburgh 17:65–73

    Google Scholar 

  34. Tannehill IR (1938) Hurricanes: their nature and history; particularly those of the West Indies and the southern coasts of the United States. Princeton University Press, New Jersey

    Google Scholar 

  35. Idrac P, Bureau R (1927) Expériences sur la propagation des sondes radiotélégraphiques en altitude. C R Acad Sci, Paris 184:691

    Google Scholar 

  36. Molchanov P (1928) Zur technik der erforschung den atmosphäre. Beitr Phys Frei Atmos, Leipzig 14:45

    Google Scholar 

  37. Duckert P (1931) Die entwicklung der telemeteorographie und ihrer instrumentarien. Beitr Phys Frei Atmos, Leipzig 18:68

    Google Scholar 

  38. Duckert P (1933) Das radiosondenmodell telefunken und seine anwendung. Beitr Phys Frei Atmos, Leipzig 20:303–311

    Google Scholar 

  39. Blair WR, Lewis HM (1931) Radio tracking of meteorological ba1loons. Proc Inst Radio Eng, New York 19:1529–1560

    Google Scholar 

  40. Corriez M, Perlat A (1935) La méthode radiogoniométrique de l’Office National Météorologique pour la mésure de la direction et de la vitesse du vent par temps couvert. Météorologie, Paris 11:368

    Google Scholar 

  41. Smith-Rose RL, Hopkins HG (1946) The application of ultra-short-wave direction finding to radio sounding balloons. Proc Phys Soc, London 58:184–200

    Article  Google Scholar 

  42. Diamond H, Hinman WS, Dunmore FW (1937) The development of a radio-meteorograph system for the Navy Department. Bull Am Meteorol Soc 18:73–99

    Article  Google Scholar 

  43. Hitschfeld WF (1986) The invention of radar meteorology. Bull Am Meteorol Soc 67:33–37

    Article  Google Scholar 

  44. Maynard RH (1945) Radar and weather. J Meteorol 2:214–226

    Article  Google Scholar 

  45. Battan LJ (1961) The nature of violent storms. Doubleday and Company, New York

    Google Scholar 

  46. Bent AE (1946) Radar detection of precipitation. J Meteorol 3:78–84

    Article  Google Scholar 

  47. Donaldson RJ Jr (1965) Methods for identifying severe thunderstorms by radar: a guide and bibliography. Bull Am Meteorol Soc 46:174–193

    Article  Google Scholar 

  48. Whipple ABC (1982) Storm. Time-Life Books, Amsterdam

    Google Scholar 

  49. Barratt P, Browne IC (1953) A new method for measuring vertical air currents. Q J Roy Meteorol Soc 79:550–560

    Article  Google Scholar 

  50. Brantley JQ, Barczys DA (1957) Some weather observations with a continuous-wave Doppler radar. In: Preprints, 6th conference on weather radar. Cambridge, MA, American Meteorological Society, pp 297–306

    Google Scholar 

  51. Smith RL, Holmes DW (1961) Use of Doppler radar in meteorological observations. Mon Weather Rev 89:1–7

    Article  Google Scholar 

  52. Lhermitte RM, Atlas D (1961) Precipitation motion by pulse-Doppler radar. In: Preprints, 9th conference on radar meteorology. American Meteorological Society, pp 218–223

    Google Scholar 

  53. Rogers RR (1990) The early years of Doppler radar in meteorology. In: Atlas D (ed) Radar in meteorology. American Meteorological Society, pp 122–129

    Google Scholar 

  54. Brown RA, Lewis JM (2005) Path to NEXRAD: Doppler radar development at the National Severe Storms Laboratory. Bull Am Meteorol Soc 86:1459–1470

    Article  Google Scholar 

  55. Helmholtz H (1858) Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J Angew Math 55:25–55

    Article  MathSciNet  Google Scholar 

  56. Thomson W (1867) On vortex atoms. Proc Roy Soc, Edinburgh 6:94–105

    Article  Google Scholar 

  57. Bjerknes V (1898) Über einen hydrodynamischen Fundamentalsatz und seine Anwendung besonders auf die Mechanik der Atmosphäre und des Weltmeeres. Kongl Sven Vetensk Akad Handlingar 31:1–35

    MATH  Google Scholar 

  58. Thorpe AJ, Volkert H, Ziemianski MJ (2003) The Bjerknes’ circulation theorem: a historical perspective. Bull Am Meteorol Soc 84:471–480

    Article  Google Scholar 

  59. Bjerknes V (1904) Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik. Meteor Zeit 21:1–7

    MATH  Google Scholar 

  60. Tribbia JJ, Anthes RA (1987) Scientific basis of modern weather prediction. Science 237:493–499

    Article  Google Scholar 

  61. Bjerknes V (1910) Dynamic meteorology and hydrography. Carnegie Institution of Washington, D.C.

    MATH  Google Scholar 

  62. Bjerknes J (1919) On the structure of moving cyclones. Geofys. Publikasjoner, Norske Videnskaps-Akad. Oslo, vol 1, pp 1–8

    Google Scholar 

  63. Shapiro M, Gronas S (eds) (1999) The life cycles of extratropical cyclones. American Meteorology Society, Boston, MA

    Google Scholar 

  64. Bjerknes J, Solberg H (1921) Meteorological conditions for the formation of rain. Kristiania, Geofvsiake Publikationer 2:3–61

    Google Scholar 

  65. Bjerknes V (1921) On the dynamics of the circular vortex with applications to the atmos-phere and atmospheric vortex and wave motions. Kristiania, Geofvsiake Publikationer 2:1–89

    Google Scholar 

  66. Bjerknes J, Solberg H (1922) Live cycle or cyclones and the polar front theory on atmos-pheric circulation. Kristiania, Geofvsiake Publikationer 3:484–491

    Google Scholar 

  67. Bergeron T (1928) Über die dreidimensional verknüpfende Wetteranalysee. Kristiania, Geofvsiake Publikationer 5:1–111

    Google Scholar 

  68. Sutton OG (1961) The challenge of the atmosphere. Harper, New York

    Google Scholar 

  69. Hayes B (2001) The weatherman. Am Sci 89:10–14

    Article  Google Scholar 

  70. Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  71. Dines WH (1925) The correlation between pressure and temperature in the upper air with a suggested explanation. Q J Roy Meteorol Soc 51:31–38

    Article  Google Scholar 

  72. Bjerknes J (1932) Exploration de quelques perturbations atmosphèriques à l’aide de son-dages rapproches dan le temps. Geofys Publ, Norske Videnskaps-Akad, vol 9. Oslo, pp 1–52

    Google Scholar 

  73. Palmén E (1935) Registrierballonaufstiege in einer tiefen Zyklone. Soc Sci Fennica Commentationes Phys Math 8:3

    Google Scholar 

  74. Bjerknes J, Palmén E (1937) Investigations or selected European cyclones by means of serial ascents. Geofys Publ, Norske Videnskaps-Akad, vol 12, Oslo, pp 1–62

    Google Scholar 

  75. Rossby CG (1939) Relation between variations in the intensity or the zonal circulation or the atmosphere and the displacement or the semi-permanent centres of action. J Marine Res 2:38–55

    Article  Google Scholar 

  76. Rossby CG (1940) Planetary flow patterns in the atmosphere. Q J Roy Meteorol Soc 66(Supplement):68–87

    Google Scholar 

  77. Brunt D (1939) Physical and dynamical meteorology. Cambridge University Press, Cambridge

    Google Scholar 

  78. Humphreys WJ (1940) Physics of the air. McGraw-Hill, New York

    Google Scholar 

  79. Byers HR (1944) General meteorology. McGraw-Hill, New York

    Google Scholar 

  80. Scorer RS (1958) Natural aerodynamics. Pergamon Press, London.

    MATH  Google Scholar 

  81. Hess SL (1959) Introduction to theoretical meteorology. Holt, New York

    MATH  Google Scholar 

  82. Palmén E (1951) The role of atmospheric disturbances in the general circulation. Q J Roy Meteorol Soc 77:337–354

    Article  Google Scholar 

  83. Courant R, Friedrichs KO, Lewy H (1928) Über die partiellien Differenzengleichung en der mathematischen Physik. Math Ann 100:32–74

    Article  MathSciNet  MATH  Google Scholar 

  84. Charney JG (1947) The dynamics of long waves in a baroclinic westerly current. J Meteorol 4:135–162

    Article  MathSciNet  Google Scholar 

  85. Charney JG (1948) On the scale of atmospheric motions. Geofys Publ 17:3–17

    MathSciNet  Google Scholar 

  86. Charney JG (1949) On a physical basis for numerical prediction of largescale motions in the atmosphere. J Meteorol 6:371–385

    Article  Google Scholar 

  87. Charney JG, Eliassen A (1949) A numerical method for predicting the perturbations of middle latitude westerlies. Tellus 1:38–54

    Article  MathSciNet  Google Scholar 

  88. Charney JG, Fjörtoft R, von Neumann J (1950) Numerical integration of the barotropic vorticity equation. Tellus 2:237–254

    Article  MathSciNet  Google Scholar 

  89. Lynch P (2008) The ENIAC forecasts: a recreation. Bull Am Meteorol Soc 89:45–55

    Article  Google Scholar 

  90. Charney JG, Phillips NA (1953) Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J Meteorol 10:71–99

    Article  MathSciNet  Google Scholar 

  91. Thompson PD (1961) Numerical weather analysis and prediction. The MacMillan Company, New York

    MATH  Google Scholar 

  92. Holmström EI (1963) On a method for a parametric representation of the state of the atmosphere. Tellus 15:127–149

    Article  Google Scholar 

  93. Freiberger W, Grenander U (1967) On the formulation of statistical meteorology. Rev Int Stat Inst 33:59–86

    Article  MathSciNet  MATH  Google Scholar 

  94. Wadsworth GP, Bryan JG, Gordon CH (1948) Short range and extended forecasting by statistical methods. U.S. Air Force, Air Weather Service Tech. Report 105–38, Washington, DC

    Google Scholar 

  95. Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. Science Report No. 1, Department of Meteorology, M.I.T., Cambridge, MA

    Google Scholar 

  96. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  MATH  Google Scholar 

  97. Atkinson BW (1981) Meso-scale atmospheric circulations. Academic Press, London

    Google Scholar 

  98. Jeffreys H (1922) On the dynamics of wind. Q J Roy Meteorol Soc 48:29–47

    Article  Google Scholar 

  99. Lamb H (1906) Hydrodynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  100. Simpson RH, Riehl H (1981) The hurricane and its impact. Louisiana State University Press, Baton Rouge

    Google Scholar 

  101. Dunn GE, Gentry RC, Lewis BM (1968) An eight-year experiment in improving forecasts of hurricane motion. Mon Weather Rev 96:708–713

    Article  Google Scholar 

  102. Dunn GE (1940) Aerology in the Hurricane warning service. Mon Weather Rev 68:303–315

    Article  Google Scholar 

  103. Depperman CE (1947) Notes on the origin and structure of Philippine typhoons. Bull Am Meteorol Soc 28:399–404

    Article  Google Scholar 

  104. Rodewald M (1936) Die entstehungsbedingungen der tropischen orkane. Meteorologischen Zeitschrift, Heft 6, Berlin

    Google Scholar 

  105. True AE (1937) The structure of tropical cyclones. In: Proceedings of U.S. Naval Institute, Annapolis, March

    Google Scholar 

  106. Riehl H (1948) On the formation of typhoons. J Meteorol 5:247–264

    Article  Google Scholar 

  107. Riehl H (1954) Tropical meteorology. McGraw-Hill, New York

    Google Scholar 

  108. Malkus J, Riehl H (1960) On the dynamics and energy transformations in steady-state hurricanes. Tellus 12:1–20

    Article  Google Scholar 

  109. Riehl H, Haggard WH, Sanborn RW (1956) On the prediction of 24-hour hurricane motion. J Meteorol 5:415–430

    Article  Google Scholar 

  110. Hubert WE (1957) Hurricane trajectory forecasts from a non-divergent, non-geostrophic, barotropic model. Mon Weather Rev 85:83–87

    Article  Google Scholar 

  111. Miller BI, Moore PL (1960) A comparison of hurricane steering levels. Bull Am Meteorol Soc 41:59–63

    Article  Google Scholar 

  112. Finley JP (1887) Tornadoes. What they are and how to observe them: with practical suggestions for the protection of life and property. Insurance Monitor Press, New York

    Google Scholar 

  113. Finley JP (1882) Character of six hundred tornadoes. Prof. Papers of the Signal Service, no. VII, Washington Office of the Chief Signal Officer

    Google Scholar 

  114. Möller M (1884) Untersuchung über die Lufttemperatur und Luftbewegung in einer Böe. Meteorol Z l:230–243

    Google Scholar 

  115. Davis WM (1894) Elementary meteorology. Ginn, Boston

    Google Scholar 

  116. Wegener A (1911) Thermodynamik der atmosphäre. J. A. Barth, Leipzig

    MATH  Google Scholar 

  117. Peterson RE (1992) Johannes Letzmann: a pioneer in the study of tornadoes. Weather Forecast. 7:166–184

    Article  Google Scholar 

  118. Letzmann L (1921) Sitzungsber. Naturforsch Ges Univ, Dorpat, 28

    Google Scholar 

  119. Brooks CF (1922) The local or heat thunderstorm. Mon Weather Rev 50:281–287

    Article  Google Scholar 

  120. Simpson GC, Scrase FJ (1937) The distribution of electricity in thunderclouds. Proc Roy Soc Lond A 161:309–352

    Article  Google Scholar 

  121. Suckstorff GA (1938) Kaltlufterzeugung durch Niederschlag. Z Meteorol 55:287–292

    Google Scholar 

  122. Byers HR (1937) Synoptic and aeronautical meteorology. McGraw-Hill, New York

    Google Scholar 

  123. Simpson GC, Robinson GD (1941) The distribution of electricity in thunderclouds, II. Proc R Soc Lond A 177:281–329

    Article  Google Scholar 

  124. Gunn R (1947) The electric charge on precipitation at various altitudes and its relation to thunderstorms. Phys Rev 71:181–186

    Article  Google Scholar 

  125. Benard H (1901) Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent. Annales de Chimie et de Physique, Paris 7:62–144

    Google Scholar 

  126. Rayleigh Lord (1916) On convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Philos Mag 32:529–546

    Article  MATH  Google Scholar 

  127. Tepper M (1950) A proposed mechanism of squall lines: The pressure jump line. J Meteorol 7:21–29

    Article  Google Scholar 

  128. Byers HR, Braharn RR (1949) The thunderstorm. U.S Department of Commerce, Weather Bureau, Washington, D.C.

    Google Scholar 

  129. Byers HR (1965) Elements of cloud physics. University of Chicago Press

    Google Scholar 

  130. Wichmann H (1951) Über das Vorkommen und Verhalten des Hagels in Gewitterwolken. Ann Meteorol 1:218–225

    Google Scholar 

  131. Scorer RS, Ludlam FH (1953) Bubble theory of penetrative convection. Q J Roy Meteorol Soc 79:94–103

    Article  Google Scholar 

  132. Fujita TT, Wakimoto RM (1981) Five scales of airflow associated with a series of downbursts on 16 July 1980. Mon Weather Rev 109:1438–1456

    Article  Google Scholar 

  133. Müldner W (1950) Die Windbruchschäden des 22.7.1948 im Reichswald bei Nürenberg. Berichte Dtsch Wetterdienstes 19:3–39

    Google Scholar 

  134. Gunn R (1956) Electric field intensity at the ground under active thunderstorms and tornadoes. J Meteorol 13:269–275

    Article  Google Scholar 

  135. Vonnegut B (1960) Electrical theory of tornadoes. J Geophys Res 65:203–212

    Article  Google Scholar 

  136. Kobayasi T, Sasaki T (1932) Uber Land- und Seewinde. Beitr Phys Frei Atmos 19:17–21

    Google Scholar 

  137. Arakawa H, Utsugi M (1937) Theoretical investigation on land and sea breezes. Geophys Mag Tokyo 11:97–104

    MATH  Google Scholar 

  138. Haurwitz B (1947) Comments on the sea-breeze circulation. J Meteorol 4:1–8

    Article  Google Scholar 

  139. Schmidt FH (1947) An elementary theory of the land and sea breeze circulation. J Meteorol 4:9–15

    Article  Google Scholar 

  140. Pierson WJ Jr (1950) The effects of eddy viscosity, Coriolis deflection and temperature fluctuation on the see breeze as a function of time and height. New York University, Meteorol, Papers, 1

    Google Scholar 

  141. Willett HC (1944) Descriptive meteorology. Academic Press, New York

    Google Scholar 

  142. Defant F (1950) Theorie der land- und seewind. Arch Meteorol Geophys Bioklimatol Ser A 2:404–425

    Article  Google Scholar 

  143. Defant F (1951) Local winds. Compendium of meteorology. American Meteorological Society, Boston, MA, pp 655–672

    Chapter  Google Scholar 

  144. Pearce RP (1955) The calculation of a sea breeze circulation in terms of the differential heating across the coastline. Q J Roy Meteorol Soc 81:351–381

    Article  Google Scholar 

  145. Estoque MA (1961) A theoretical investigation of the sea breeze. Q J Roy Meteorol Soc 87:136–146

    Article  Google Scholar 

  146. Fisher EL (1961) A theoretical study of the sea breeze. J Meteorol 18:215–233

    Article  Google Scholar 

  147. Hann J (1866) Zur Frage über den Ursprung des Föhn. Z öst Ges Meteorol 1:257–263

    Google Scholar 

  148. Hann J (1878) Zur Meteorologie der Alpengipfel. S B Akad Wiss Wien Abt Ha 78:829–866

    Google Scholar 

  149. Defant F (1910) Zur Theorie der Berg- und Talwinde. Meteorol Z 27:161–168

    Google Scholar 

  150. Ekhart E (1931) Zur Aerologie des Berg- und Talwindes. Beitr Phys Frei Atmos 18:1–26

    Google Scholar 

  151. Wagner A (1932) Neuere Theorie des Berg- und Talwindes. Meteorol Z 49:329–341

    MATH  Google Scholar 

  152. Wagner A (1938) Theorie und Beobachtungen der periodischen Gebirgswinde. Beitr Geophys 52:408–449

    Google Scholar 

  153. Prandtl L (1942) Führer durch die Strömungslehre. Braunschweig, F. Vieweg Sohn, pp 373–375

    Google Scholar 

  154. Defant F (1949) Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch Meteorol Geophys Biokl 1(A):421–450

    Google Scholar 

  155. Ficker H, De Rudder B (1943) Föhn und Föhnwirkungen. Beeker & Erler, Leipzig

    Google Scholar 

  156. Mazelle E (1907) Kälteeinbruch und Bora in Triest, Januar, 1907. Meteor Z 24:171–172

    Google Scholar 

  157. Kesslitz W (1914) Über die Windverhältnisse an der Adria. Météor Z 31:248–251

    Google Scholar 

  158. Galzi L (1927) Le mistral à Nîmes. La Météorol 3:213–214

    Google Scholar 

  159. Rubin MJ (ed) (1966) Studies in Antarctic meteorology. Antarctic Research Series, 9, American Geophysical Union, Washington, D.C., Publication 1482

    Google Scholar 

  160. Corby GA (1954) The airflow over mountains. A review of the state of current knowledge. Q J Roy Meteorol Soc 80:491–521

    Article  Google Scholar 

  161. Abe M (1929) Mountain clouds, their forms and connected air current. Bull Central Meteorol Observatory Tokyo Jpn 7(3)

    Google Scholar 

  162. Horsley T (1945) New light on the standing wave. Aeronaut Lond 11:38

    Google Scholar 

  163. Turner HS (1951) Standing waves and powered flight. Met Mag London 81:106

    Google Scholar 

  164. Austin ARI (1952) Wave clouds over southern England. Weather 7:50–53

    Article  Google Scholar 

  165. Förchtgott J (1952) Mechanical turbulence. Letecká Met, Prague, p 114

    Google Scholar 

  166. Lord Kelvin (1886) On stationary waves in flowing water. Philos Mag 5:353–357, 445–452, 517–530

    Google Scholar 

  167. Queney P (1948) The problem of air flow over mountains: a summary of theoretical studies. Bull Am Meteorol Soc 29:16–26

    Article  Google Scholar 

  168. Scorer RS (1949) Theory of waves in the lee of mountains. Q J Roy Meteorol Soc 75:41–56

    Article  Google Scholar 

  169. Scorer RS (1955) Theory of air flow over mountains. IV—Separation of flow from the surface. Q J Meteorol Soc 81:340–350

    Article  Google Scholar 

  170. Long RR (1953) Some aspects of the flow of stratified fluids. I. A theoretical investigation. Tellus 5:42–58

    Article  MathSciNet  Google Scholar 

  171. Long RR (1954) Some aspects of the flow of stratified fluids. II. Experiments with a two-fluid system. Tellus 6:97–115

    Google Scholar 

  172. Abe M (1942) An attempt to make visible the mountain air current. J Met Soc, Tokyo, p 69

    Google Scholar 

  173. Field JH, Warden R (1933) A survey of the air currents in the Bay of Gibraltar, 1929–1930. Geophys Mem Met Off, Lond 7(59)

    Google Scholar 

  174. Kampé de Fériet J (1936) Atmosphärische Stromungen; Wolkenstudien nach Kinoaufnahmen in Hochgebirge, Jungfrau und Matterhorn. Meteorol Zeitschr 53:277–280

    Google Scholar 

  175. Warden R, Burge CH (1947) Wind flow over a mountainous area. NPL Aero Report 151

    Google Scholar 

  176. Rouse H (1951) Model techniques in meteorological research. Compendium of Meteorology, American Meteorological Society, 1249

    Google Scholar 

  177. Fujita T (1951) Microanalytical study of a thundernose. Geophys Mag 22:71–88

    Google Scholar 

  178. Fujita T, Newstein H, Tepper M (1956) Mesoanalysis—an important scale in the analysis of weather data. U.S Weather Bureau, Research Paper 39

    Google Scholar 

  179. Huschke RE (ed) (1959) Glossary of meteorology. American Meteorological Society, Boston, MA

    Google Scholar 

  180. Tepper M (1959) Mesometeorology—The link between macro-scale atmospheric motions and local weather. Bull Am Meteorol Soc 40:56–72

    Article  Google Scholar 

  181. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  182. Sutton OG (1953) Micrometeorology. McGraw-Hill, New York

    Google Scholar 

  183. Stevenson T (1880) Report on the simultaneous abservations of the force of the wind at different heights above the ground. J Scot Meteorol Soc 5:348–351

    Google Scholar 

  184. Archibald ED (1885) An account of some preliminary experiments with Birams anemometers, attached to kite strings. Nature 31:6-66–68

    Article  Google Scholar 

  185. Archibald ED (1886) Some results of observations with kite wire suspended anemometers up to 1300 feet above the ground in 1883–85. Nature 33:593––595

    Article  Google Scholar 

  186. Prandtl L (1921) Über den Reibungswiderstand strömender Luft. Ergebnisse AVA Göttingen, Serie 1:136

    MATH  Google Scholar 

  187. Eiffel G (1900) Travaux Scientifiques executes a la tour de trois cents metres de 1889 a 1900. Maretheux, Paris

    Google Scholar 

  188. von Kármán T (1954) Aerodynamics. Cornell University Press, Ithaca

    MATH  Google Scholar 

  189. Davenport AG (1975) Perspectives on the full-scale measurement of wind effects. J Ind Aerodyn 1:23–54

    Article  Google Scholar 

  190. Loyrette H (1985) Gustave Eiffel. Rizzoli, New York

    Google Scholar 

  191. Harriss J (1975) The tallest tower. Regnery Gateway, Washington, D.C.

    Google Scholar 

  192. Nansen F (1902) Oceanography of the North Pole Basin. The Norwegian North Pole expedition 1893–1896. Sci Results III(9) Kristiania

    Google Scholar 

  193. Ekman VW (1902) Om jordrotationens inverkan pa vindströmmar i hafvet. Nyt Magazin for Naturvidenskab, B. 40, H. 1, Kristiania

    Google Scholar 

  194. Ekman VW (1905) On the influence of the earth’s rotation on ocean currents. Arkiv för Matematik, Astronomi ocn Fysik, Stockholm, Sweden

    MATH  Google Scholar 

  195. Kremser V (1909) Ergebnisse vieljähriger Windregistrierungen in Berlin. Meteor Z 26:238–252

    Google Scholar 

  196. Rawson HE (1913) Atmospheric waves, eddies and vortices. Aeronaut J 17:245–256

    Google Scholar 

  197. Dobson GMB (1914) Pilot balloon ascents at the central flying school. Upavon during the year 1913. Q J Roy Meteorol Soc 40:123–135

    Article  Google Scholar 

  198. Taylor GI (1915) Eddy motion in the atmosphere. Philos Trans Roy Soc Lond 215:1–26

    Article  Google Scholar 

  199. Taylor GI (1916) Skin friction of the wind on the earth’s surface. Proc Roy Soc Lond A 92:196–199

    Article  Google Scholar 

  200. Richardson LF (1920) The supply of energy to and from atmospheric eddies. Proc Roy Soc Lond A 97:354–373

    Article  Google Scholar 

  201. Taylor GI (1921) Diffusion by continuous movements. Proc Lond Math Soc 20:196–212

    MathSciNet  MATH  Google Scholar 

  202. Richardson LF (1925) Turbulence and vertical temperature difference near trees. Philos Mag 49:81–90

    Article  Google Scholar 

  203. Prandtl L (1926) Uber die ausgebildete turbulenz. Verhandlungen des zweiten internationalen kongresses fur technische mechanik, Zurich, pp 62–74

    MATH  Google Scholar 

  204. von Kármán TH (1930) Mechanische Ähnlichkeit und Turbulenz. Nachr. Ges. Wiss. Göttingen. Math Phys Klasse, pp 58–76 (English translation in NACA TM 611, 1931)

    Google Scholar 

  205. Prandtl L (1932) Zur turbulenten Stromung in Rohren und laengs Platten. Ergeb Aerodyn Versuchsant Göttingen 4:18–29

    MATH  Google Scholar 

  206. Prandtl L (1933) Neuere Ergebnisse der Turbulenzforschung. Z Ver Deutsch Ing 77:105–114

    MATH  Google Scholar 

  207. Taylor GI (1932) The transport of vorticity and heat through fluids in turbulent motion. Proc Roy Soc Lond A 135:685–705

    Article  MATH  Google Scholar 

  208. Schlichting H (1955) Boundary-layer theory. Mc Graw Hill, New York

    MATH  Google Scholar 

  209. Goldstein S (1937) The similarity theory or turbulence, and flow between planes and through pipes. Proc Roy Soc Lond A 159:473–496

    Article  MATH  Google Scholar 

  210. Taylor GI (1937) Flow in pipes and between parallel planes. Proc Roy Soc Lond A 159:496–506

    Article  MATH  Google Scholar 

  211. Dryden HL, Kuethe AM (1931) Effect of turbulence in wind-tunnel measurements. NACA Report 342

    Google Scholar 

  212. Dryden HL (1931) Reduction of turbulence in wind tunnels. NACA Report 392

    Google Scholar 

  213. Townend HCH (1934) Statistical measurements of turbulence in the flow of air through a pipe. Proc Roy Soc. Lond A 145:180–211

    Article  Google Scholar 

  214. Fage A, Townend HCH (1932) An examination of turbulent flow with an ultra-microscope. Proc Roy Soc Lond A 135:656–684

    Article  Google Scholar 

  215. Simmons LFG, Salter C (1934) Experimental investigation and analysis of the velocity variations in turbulent flow. Proc Roy Soc Lond A 145:212–234

    Article  MATH  Google Scholar 

  216. Prandtl L, Reichardt H (1934) Einfluss von Wärmeschinchtung auf de Eigenschaften einer turbulenten Strömung. Deutsche Forschung, Berlin, Germany, no 21, pp 110–121

    Google Scholar 

  217. Taylor GI (1935, 1936). Statistical theory of turbulence. Proc Roy Soc Lond A 151:421–478; 156:307–317

    Google Scholar 

  218. Schubauer GB (1936) A turbulence indicator utilizing the diffusion of heat. NACA Report 524

    Google Scholar 

  219. Dryden HL, Schubauer GB, Mock WC, Skramstad HK (1937). Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres. NACA Report 581

    Google Scholar 

  220. Dryden H (1938) Turbulence investigation at the National Bureau of Standards. In: Proceedings of 5th international congress applied mechanics, p 366

    Google Scholar 

  221. Simmons LFG, Salter C (1938) An experimental determination of the spectrum of turbulence. Proc Roy Soc Lond A 165:73–89

    Article  MATH  Google Scholar 

  222. Taylor GI (1938) The spectrum of turbulence. Proc Roy Soc Lond A 164:476–490

    Article  MATH  Google Scholar 

  223. Solari G (1993) Gust buffeting. I: peak wind velocity and equivalent pressure. J Struct Eng ASCE 119:365–382

    Article  Google Scholar 

  224. von Kármán T (1937) The fundamentals of the statistical theory of turbulence. J Aero Sci 4:131

    Article  MATH  Google Scholar 

  225. von Kármán T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc Roy Soc Lond. A 164:192–215

    Article  MATH  Google Scholar 

  226. Kolmogoroff A (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C R Acad Sci URSS 30:301–305

    MathSciNet  MATH  Google Scholar 

  227. Kolmogoroff A (1941) Dissipation of energy in the locally isotropic turbulence. C R Acad Sci URSS 32:16–18

    MathSciNet  Google Scholar 

  228. Dryden H (1943) A review of the statistical theory of turbulence. Q J Appl Math 1:7–42

    Article  MathSciNet  MATH  Google Scholar 

  229. Batchelor GK (1947) Kolmogoroff’s theory of locally isotropic turbulence. Proc Camb Philos Soc 43:533–559

    Article  MathSciNet  MATH  Google Scholar 

  230. Obukhov AM (1941) On the distribution of energy in the spectrun of turbulent flow. C R Acad Sci URSS 32:19

    Google Scholar 

  231. Onsager L (1945) The distribution of energy in turbulence. Phys Rev II(68):286

    Google Scholar 

  232. Heisenberg W (1948) Zur statistischen Theorie der Turbulenz. Z Phys 124:628–657

    Article  MathSciNet  MATH  Google Scholar 

  233. von Weizsacker CF (1948) Das spektrum der turbulenz bei grossen Reynoldsschen zahlen. Z Phys 124:614–627

    Article  MathSciNet  MATH  Google Scholar 

  234. Townsend AA (1947) The measurement of double and triple correlation derivatives in isotropic turbulence. Proc Camb Philos Soc 43:560–570

    Article  Google Scholar 

  235. Corrsin S (1949) An experimental verification of local isotropy. J Aero Sci 16:757–759

    Google Scholar 

  236. von Kármán T (1948) Progress in the statistical theory of turbulence. Proc Nat Acad Sci Wash. 34:530–539

    Article  MathSciNet  MATH  Google Scholar 

  237. Batchelor GK (1949) The role of big eddies in homogeneous turbulence. Proc Roy Soc London A 195:513–532

    Article  MathSciNet  MATH  Google Scholar 

  238. Solari G, Piccardo G (2001) Probabilistic 3-D turbulence modeling for gust buffeting of structures. Prob Eng Mech 16:73–86

    Article  Google Scholar 

  239. Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, U.K.

    MATH  Google Scholar 

  240. Townsend AA (1956) The structure of turbulent shear flow. Cambridge University Press, U.K.

    MATH  Google Scholar 

  241. Hinze JO (1959) Turbulence. McGraw Hill, New York

    Google Scholar 

  242. Counihan J (1975) Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972. Atmos Environ 9:871–905

    Article  Google Scholar 

  243. Pagon WW (1935) Aerodynamics and the civil engineer—VII. Wind velocity in relation to height above ground. Eng News-Rec 742–745

    Google Scholar 

  244. Hellmann G (1917) Über die Bewegung der Luft in den untersten Scichten der Atmosphäre. Zweite Mitteilung, Meteorol Z 34:273–285

    Google Scholar 

  245. Chapman EH (1919) The variation of wind velocity with height. Prof. Notes-Met. Office No 6

    Google Scholar 

  246. Rossby CG (1932) A generalisation of the theory of the mixing length with applications to atmospheric and oceanic turbulence. Massachusetts Institute of Technology, Meteorological Papers, vol I, no 4, Cambridge, MA

    Google Scholar 

  247. Prandtl L (1932) Meteorologische anwedung der strömunglehre. Beiträge zur Physik der Freien Atmosphäre 19:188–202

    MATH  Google Scholar 

  248. Rossby CG, Montgomery RB (1935) The layer of frictional influence in wind and ocean currents. Papers in Physical Oceanography and Meteorology, M.I.T. and Woods Hole Ocean and Met. Inst., 3, 3

    Google Scholar 

  249. Scrase FJ (1930) Some characteristics of eddy motion in the atmosphere. Met Off Geophys Mem 52

    Google Scholar 

  250. Mildner P (1932) Über reibung in einer speziellen luftmasse. Beitr Phys freien Atmosph 19:151–158

    MATH  Google Scholar 

  251. Ali B (1932) Variation of wind with height. Q J Roy Meteorol Soc 58:285–288

    Google Scholar 

  252. Sutton OG (1932) Notes on the variation of wind with height. Q J Roy Meteorol Soc 58:285–288

    Google Scholar 

  253. Durst CS (1933) Notes on the variations of the structure of wind over different surfaces. Q J Roy Meteorol Soc 59:361–372

    Article  Google Scholar 

  254. Sverdrup HU (1936) Austausch und stabilitat in der untersten luftschict. Meteorol Z 53:10–15

    MATH  Google Scholar 

  255. Paeschke W (1937) Experimentelle untersuchungen zum rauhigkeits und stabilitätsproblem an der bodernen luftschicht. Beitr Phys Atmos 24:163–189

    Google Scholar 

  256. Jacobs W (1939) Unformung eines turbulenten geschwindigkeitsprofiles. Z Angew Math Mech 19:87–100 (English translation N.A.C.A. Tech. Mem. 951)

    Google Scholar 

  257. Lettau H (1939) Atmosphaerische turbulenz. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  258. Thornthwaite CW, Halstead M (1942) Note on the variation of wind with height in the layer near the ground. Trans Am Geophys Union 23:249–255

    Article  Google Scholar 

  259. Thornthwaite CW, Kaser P (1943) Wind gradient observations. Trans Am Geophys Union 1:166–182

    Article  Google Scholar 

  260. Obukhov AM (1946) Turbulence in an atmosphere with a non uniform temperature. Tr Akad Nauk SSSR Inst Teoret Geofis No. 1 (translated in Bound-Lay Meteorol, 1971, 2:7–29)

    Google Scholar 

  261. Sheppard PA (1947) The aerodynamic drag of the earth’s surface and value of von Karman’s constant in the lower atmosphere. Proc Roy Soc Lond A 188:208–222

    Article  Google Scholar 

  262. Prandtl L (1927) Über den Reibungswiderstand strömender Luft. Ergebnisse AVA Göttingen, III Series

    MATH  Google Scholar 

  263. Deacon EL (1949) Vertical diffusion in the lowest layers of the atmosphere. Q J Roy Meteorol Soc 75:89–103

    Article  Google Scholar 

  264. Sutton OG (1949) Atmospheric turbulence. Methuen, London

    Google Scholar 

  265. Wurtele MG, Sharman RD, Datta A (1996) Atmospheric lee waves. Annu Rev Fluid Mech 28:429–476

    Article  MathSciNet  Google Scholar 

  266. Wood N (2000) Wind flow over complex terrain: a historical perspective and the prospect for large-eddy modelling. Bound-Lay Meteorol 96:11–32

    Article  Google Scholar 

  267. Scorer RS (1956) Airflow over an isolated hill. Q J Roy Meteorol Soc 82:75–81

    Article  Google Scholar 

  268. Scorer RS, Wilkinson M (1956) Waves in the lee of an isolated hill. Q J Roy Meteorol Soc 82:419–427

    Article  Google Scholar 

  269. Thuillier RH, Lappe UO (1964) Wind and temperature profile characteristics from observations on a 1400 ft tower. J Appl Meteorol 3:299–306

    Article  Google Scholar 

  270. Berman S (1965) Estimating the longitudinal wind spectrum near the ground. Q J Roy Meteorol Soc 91:302–317

    Article  Google Scholar 

  271. Sherlock RH (1953) Variation of wind velocity and gusts with height. Trans Am Soc Civil Eng Paper No. 2553, 118:463–488

    Google Scholar 

  272. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the ground layer of the atmosphere. Trudy Geofizs Inst An SSSR 2:13

    Google Scholar 

  273. Businger JA (1959) A generalization of the mixing-length concept. J Meteorol 16:516–523

    Article  MathSciNet  Google Scholar 

  274. Swinbank WC (1960) Wind profile in thermally stratified flow. Nature 186:463–464

    Article  MATH  Google Scholar 

  275. Charnock H (1955) Wind stress on a water surface. Q J Roy Meteorol Soc 81:639–640

    Article  Google Scholar 

  276. Elliot WP (1958) The growth of the atmospheric internal boundary layer. Trans Am Geophys Union 39:1048–1054

    Article  Google Scholar 

  277. Kutzbach JE (1961) Investigations of the modification of wind profiles by artificially controlled surface roughness. University of Wisconsin, Department of Meteorology, Annual Report, 71

    Google Scholar 

  278. Davenport AG (1960) Rationale for determining design wind velocities. J Struct Div ASCE 86:39–68

    Google Scholar 

  279. Goldie AHR (1925) Gustiness of wind in particular cases. Q J Roy Meteorol Soc 51:216–357

    Google Scholar 

  280. Becker R (1930) Investigation of the small scale structure of the wind by means of a matrix of wind vanes. Beitre Phys Atmos 16:271

    Google Scholar 

  281. Best AC (1935) Transfer of heat and momentum in the lowest layers of the atmosphere. Met. Office Geophys Memoirs, 65

    Google Scholar 

  282. Schmidt W (1935) Turbulence near the ground. J Roy Aeronaut Soc 39:335–376

    Google Scholar 

  283. Calder KL (1939) A note on the consistency of horizontal turbulent shearing stress in the lowest layers of the atmosphere. Q J Roy Meteorol Soc 65:57–60

    Google Scholar 

  284. Pasquill F, Smith FB (1983) Atmospheric diffusion. John Wiley, New York

    Google Scholar 

  285. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation or complex Fourier series. Maths Comput 19:297–301

    Article  MathSciNet  MATH  Google Scholar 

  286. Blackman RB, Tukey JW (1959) The measurement of power spectra from the point of view of communications engineering. Dover Publications, New York

    MATH  Google Scholar 

  287. Shiotani M, Yamamoto G (1948) Atmospheric turbulence over a large city; turbulence in the free atmosphere-2. Geophys Mag 21:2

    Google Scholar 

  288. Sheppard PA, Omar T (1952) The wind stress over the ocean form observations in the trades. Q J Roy Meteorol Soc 78:583–589

    Article  Google Scholar 

  289. Priestley CHB, Sheppard PA (1952) Turbulence and transfer processes in the atmosphere. Q J Roy Meteorol Soc 78:488–529

    Article  Google Scholar 

  290. Gerhardt JR, Crain CM, Smith HW (1952) Fluctuations of atmospheric temperature as a measure of the scale and intensity of turbulence near the earth’s surface. J Meteor 9:299–310

    Article  Google Scholar 

  291. Shiotani M (1953) Some notes on the structure of wind in the lowest layers of the atmosphere. J. Meteor. Soc. Jpn 31:327–335

    Article  Google Scholar 

  292. Ogura Y (1953) The relation between the space- and time- correlation functions in a turbulent flow. J Meteor Soc Japan 31:355–369

    Article  Google Scholar 

  293. MacCready PD (1953) Atmospheric turbulence measurements and analysis. J Meteorol 10:325–337

    Article  Google Scholar 

  294. Liepmann HW (1952) On the application of statistical concepts to the buffeting problem. J Aeronaut Sci 19:793–800

    Article  MATH  Google Scholar 

  295. Panofsky HA, McCormick RA (1954) Properties of spectra of atmospheric turbulence at 100 meters. Q J Roy Meteorol Soc 80:546–564

    Article  Google Scholar 

  296. Webb EK (1955) Auto-correlations and energy spectra of atmospheric turbulence. C.S.I.R.O. Division of Meteorological Physics, Technical Paper 5

    Google Scholar 

  297. Press H, Meadows MT, Hadlock I (1956) A reevaluation of data on atmospheric turbulence and airplane gust loads for application in spectral calculations. NACA Report 1272

    Google Scholar 

  298. Davenport AG (1961) The spectrum of horizontal gustiness near the ground in high winds. Q J Roy Meteorol Soc 87:194–211

    Article  Google Scholar 

  299. Deacon EL (1955) Gust variation with height up to 50 m. Q J Roy Meteorol Soc 81:562–573

    Article  Google Scholar 

  300. Wax MP (1956) An experimental study of wind structure. Technical Report C/T 114, British Electrical and Allied Industries Research Association

    Google Scholar 

  301. Panofsky HA, van der Hoven I (1955) Spectra and cross-spectra of velocity components of the micro-meteorological range. Q J Roy Meteorol Soc 81:603–606

    Article  Google Scholar 

  302. Griffith HL, Panofsky HA, van der Hoven I (1956) Power-spectrum analysis over large ranges of frequency. J Meteorol 13:279–282

    Article  Google Scholar 

  303. Van der Hoven I (1957) Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J Meteorol 14:160–164

    Article  Google Scholar 

  304. Cramer HE (1959) Measurements of turbulence structure near the ground within the frequency range from 0.5 to 0.01 cycles sec. In: Advances in geophysics, 6, Atmospheric diffusion and air pollution. New York and London, Academic Press, pp 75–96

    Google Scholar 

  305. Cramer HE (1960) Use of power spectra and scales of turbulence in estimating wind loads. Meteor Mon 4:12–18

    Google Scholar 

  306. Favre AJ, Gaviglio JJ, Dumas RJ (1957) Space-time double correlations and spectra in a turbulent boundary layer. J Fluid Mech 2:313–342

    Article  MathSciNet  Google Scholar 

  307. Favre AJ, Gaviglio JJ, Dumas RJ (1958) Further space-time correlations of velocity in a turbulent boundary layer. J Fluid Mech 3:344–356

    Article  Google Scholar 

  308. Sherlock RH, Stout MB (1932) Picturing the structure of the wind. Civil Eng 2:358–363

    Google Scholar 

  309. Sherlock RH, Stout MB (1937) Wind structure in winter storms. J Aeronaut Sci 5:53–61

    Article  Google Scholar 

  310. Mattice WA (1938) A comparison between wind velocities as recorded by the Dines and Robinson anemometers. Mon Weather Rev 66:238–240

    Article  Google Scholar 

  311. Sherlock RH (1947) Gust factors for the design of buildings. International Association for Bridge and Structural Engineering, vol 8, Zurich, Switzerland

    Google Scholar 

  312. Durst CS (1960) Wind speeds over short period of time. Meteor Mag, Meteor Office 89, 181–186

    Google Scholar 

  313. Hesselberg Th, Bjorkdal E (1929) Uber das verteilungsgesetz der windunruhe. Beitr Phys Atmos 15:121–133

    MATH  Google Scholar 

  314. Van Orman WT (1931) A preliminary meteorological survey for airship bases on the middle Atlantic seabord. Mon Weather Rev 59:57–65

    Article  Google Scholar 

  315. Brooks CEP, Durst CS, Carruthers N (1946) Upper winds over the world—Part I. Q J Roy Meteorol Soc 72:55–73

    Article  Google Scholar 

  316. Brooks CEP, Durst CS, Carruthers N, Dewar D, Sawyer JS (1950) Upper winds over the world. Geophys. Memoirs, No. 85, Meteorological Office, H.M.S.O.

    Google Scholar 

  317. Henry TJG (1957) Maps of upper winds over Canada. Meteorological Branch, Department of Transport, Toronto

    Google Scholar 

  318. Essenwanger OM (1959) Probleme der windstatistik. Meteor Rundsch 12:37–47

    Google Scholar 

  319. Putnam PC (1948) Power from the wind. Van Nostrand Reinhold, New York

    Google Scholar 

  320. Sherlock RH (1951) Analyzing winds for frequency and duration. Meteor Mon, No 4. American Meteorological Society, pp 72–79

    Google Scholar 

  321. Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York

    Book  MATH  Google Scholar 

  322. Baynes CJ (1974) The statistic of strong winds for engineering applications. Ph.D. Thesis, The University of Western Ontario, London, Ontario, Canada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Solari .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solari, G. (2019). Wind Meteorology, Micrometeorology and Climatology. In: Wind Science and Engineering. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-18815-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18815-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18814-6

  • Online ISBN: 978-3-030-18815-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics