Skip to main content

Teachers’ Mathematical Knowledge, Teaching and the Problem of Inequality

  • Chapter
  • First Online:

Part of the book series: Policy Implications of Research in Education ((PIRE,volume 10))

Abstract

In this chapter, the foci of key national policy interventions are considered in relation to concerns with primary teachers’ mathematical knowledge and primary mathematics teaching in South Africa. This evidence points to knowledge and practice resources for supporting learning being distributed inequitably across socio-economic divides, with teachers in lower socio-economic status schools scoring lower than their higher socio-economic status counterparts on measures of mathematical content knowledge and working with slower pacing and more limited curriculum coverage. Given the broad agreement that basic mathematical knowledge is required for the possibility of coherent and connected mathematics teaching, there is urgent need for policy attention to improving primary teachers’ content knowledge and classroom practices related to mathematics, to address inequality. The analysis presented in this chapter suggests, through the categorization of resources into material, cultural and human domains, that attention to human resources in terms of teachers’ mathematical knowledge and mathematics teaching has largely been sidelined. A lack of consensus in the research base on what counts as basic mathematical knowledge and as quality teaching is indicated as part of the problem. Initiatives to build consensus are viewed as useful for directing policy on mathematical knowledge and mathematics teaching development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal of Mathematics Teacher Education, 3(3), 205–224.

    Article  Google Scholar 

  • Bowie, L., & Reed, Y. (2016). How much of what? An analysis of the espoused and enacted mathematics and english curricula for intermediate phase student teachers at five South African universities. Perspectives in Education, 34(1), 102–119.

    Article  Google Scholar 

  • Carnoy, M., Chisholm, L., & Chilisa, B. (2012). The low achievement trap: Comparing schooling in Botswana and South Africa. Pretoria: HSRC Press.

    Google Scholar 

  • Council on Higher Education. (2010). Report on the national review of academic and professional programmes in education. he monitor no 11. Pretoria: CHE.

    Google Scholar 

  • DBE. (2017). Workbooks home page. https://www.education.gov.za/Curriculum/LearningandTeachingSupportMaterials(LTSM)/Workbooks.aspx. Retrieved on 18th Jan 2017.

  • DoE. (2008a). Foundations for learning: Assessment framework – foundation phase. Pretoria: Department of Education.

    Google Scholar 

  • DoE. (2008b). Foundations for learning campaign. Government Gazette. Letter to foundation phase and intermediate phase teachers. Pretoria: DoE.

    Google Scholar 

  • Ensor, P., Hoadley, U., Jacklin, H., Kuhne, C., Schmitt, E., Lombard, A., & Van den Heuvel-Panhuizen, M. (2009). Specialising pedagogic text and time in foundation phase numeracy classrooms. Journal of Education, 47(2009), 5–30.

    Google Scholar 

  • Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371–406.

    Article  Google Scholar 

  • Hoadley, U. (2007). The reproduction of social class inequalities through mathematics pedagogies in South African primary schools. Journal of Curriculum Studies, 39(6), 679–706.

    Article  Google Scholar 

  • Hoadley, U. (2012). What do we know about teaching and learning in South African primary schools? Education as Change, 16(2), 187–202.

    Article  Google Scholar 

  • Hoadley, U., & Galant, J. (2016). An analysis of the grade 3 department of basic education workbooks as curriculum tools. South African Journal of Childhood Education, 6(1), 1–12.

    Article  Google Scholar 

  • Howie, S. J. (2003). Language and other background factors affecting secondary pupils’ performance in mathematics in South Africa. African Journal of Research in Mathematics, Science and Technology Education, 7(1), 1–20.

    Article  Google Scholar 

  • Jita, L. (1998). Resources for transforming science teaching in schools in Africa. In J. Hubert, A. Miller, & T. Moja (Eds.), Education Africa forum (2nd. ed., 5255). South Africa: Education Africa.

    Google Scholar 

  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teacher’s understanding of fundamental mathematics in China and the United States. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Mathews, C. (2014). Teaching division: The importance of coherence in what is made available to learn. In H. Venkat, M. Rollnick, J. Loughran, & M. Askew (Eds.), Exploring mathematics and science teachers’ knowledge: Windows into teacher thinking (pp. 84–95). London: Routledge.

    Google Scholar 

  • Mathews, C., Mdluli, M., & Ramsingh, V. (2014). The use of workbooks in South African grade 3 mathematics classrooms. South African Journal of Childhood Education 4(1), 80–94. Retrieved 18 Jan 2018, from http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2223-76822014000100006&lng=en&tlng=en

    Google Scholar 

  • Meier, C. (2011). The foundations for learning campaign: Helping hand or hurdle? South African Journal of Education, 31(4), 549–560.

    Article  Google Scholar 

  • Monk, D. H. (1994). Subject area preparation of secondary mathematics and science teachers and student achievement. Economics of Education Review, 13, 125–145.

    Article  Google Scholar 

  • National Treasury. (2014). Provisional budgets and expenditure review 2010/11-2016/17. Pretoria: National Treasury.

    Google Scholar 

  • NEEDU. (2013). National report 2012: The state of literacy teaching and learning in the foundation phase. National Education Evaluation & Development Unit.

    Google Scholar 

  • Reeves, C., & Muller, J. (2005). Picking up the pace: Variation in the structure and organization of learning school mathematics. Journal of Education, 37(1), 103–130.

    Google Scholar 

  • Roberts, N. (2016). Additive relations word problems in the South African curriculum and assessment policy standard at foundation phase. African Journal of Research in Mathematics, Science and Technology Education, 20(2), 106–118.

    Article  Google Scholar 

  • SAHRC, UNICEF. (2014). Poverty traps and social exclusion among children in South Africa 2014. Pretoria: SAHRC & UNICEF.

    Google Scholar 

  • Schmidt, W. H., & Prawat, R. S. (2006). Curriculum coherence and national control of education: Issue or non-issue? Journal of Curriculum Studies, 38(6), 641–658.

    Article  Google Scholar 

  • Schoenfeld, A. H. (2004). The math wars. Educational Policy, 18(1), 253–286.

    Article  Google Scholar 

  • Schollar, E. (2008). Final report: The primary mathematics research project 2004–2007–towards evidence-based educational development in South Africa. Johannesburg: Eric Schollar & Associates.

    Google Scholar 

  • Setati, M. (2005). Teaching mathematics in a primary multilingual classroom. Journal for Research in Mathematics Education, 36, 447–466.

    Google Scholar 

  • Setati, M. (2008). Access to mathematics versus access to the language of power: The struggle in multilingual mathematics classrooms. South African Journal of Education, 28(1), 103–116.

    Google Scholar 

  • Shalem, Y., & Hoadley, U. (2009). The dual economy of schooling and teacher morale in South Africa. International Studies in Sociology of Education, 19(2), 119–134.

    Article  Google Scholar 

  • Spaull, N. (2016). Disentangling the language effect in South African schools: Measuring the impact of ‘language of assessment’in grade 3 literacy and numeracy. South African Journal of Childhood Education, 6(1), 1–20. https://doi.org/10.4102/sajce.v6i1.475

    Article  Google Scholar 

  • Spaull, N., & Kotze, J. (2015). Starting behind and staying behind in South Africa: The case of insurmountable learning deficits in mathematics. International Journal of Educational Development, 41, 13–24.

    Article  Google Scholar 

  • Tatto, M. T., Peck, R., Schwille, J., Bankov, K., Senk, S. L., Rodriguez, M., Ingvarson, L., Reckase, M., & Rowley, G. (2012). Policy, practice, and readiness to teach primary and secondary mathematics in 17 countries: Findings from the IEA teacher education and development study in mathematics (TEDS-M). Amsterdam: IEA.

    Google Scholar 

  • Taylor, N. (2000). Mathematics in curriculum 2005: Submission to the ministerial review committee. Pythagoras, 59, 8–9.

    Google Scholar 

  • Taylor, N. (2011). The national school effectiveness study (NSES): Summary for the synthesis report. Johannesburg: JET Education Services.

    Google Scholar 

  • Umalusi. (2014). What’s in the CAPS package? A comparative study of the national curriculum statement (NCS) and the curriculum and assessment policy statement (CAPS) further education and training (FET) phase overview report. Pretoria: Umalusi.

    Google Scholar 

  • Van den Heuvel-Panhuizen, M. (2008). Children learn mathematics: A learning-teaching trajectory with intermediate attainment targets for calculation with whole numbers in primary school. Rotterdam: Sense Publishers.

    Book  Google Scholar 

  • Venkat, H., & Adler, J. (2012). Coherence and connections in teachers’ mathematical discourses in instruction. Pythagoras, 33(3), 1–8.

    Article  Google Scholar 

  • Venkat, H., & Askew, M. (2012). Mediating early number learning: Specialising across teacher talk and tools. Journal of Education, 56, 67–90.

    Google Scholar 

  • Venkat, H., & Naidoo, D. (2012). Analyzing coherence for conceptual learning in a grade 2 numeracy lesson. Education as Change, 16(1), 21–33.

    Article  Google Scholar 

  • Venkat, H., & Spaull, N. (2015). What do we know about primary teachers’ mathematical content knowledge in South Africa? An analysis of SACMEQ 2007. International Journal of Educational Development, 41, 121–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamsa Venkat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkat, H. (2019). Teachers’ Mathematical Knowledge, Teaching and the Problem of Inequality. In: Spaull, N., Jansen, J. (eds) South African Schooling: The Enigma of Inequality. Policy Implications of Research in Education, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-18811-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18811-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18810-8

  • Online ISBN: 978-3-030-18811-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics