Skip to main content

Parametric Optimization of Fixtures for Multiaxis Machining of Parts

  • Conference paper
  • First Online:
Advances in Manufacturing II (MANUFACTURING 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

Fixtures play an important role in the production of high-quality and competitive products, especially in the context of multiproduct manufacturing, which requires fast reequipment in the transition to the machining of parts of the other type. The article deals with the problem of determining the optimal dimensions of the fixture functional elements for machining of the lever-type parts within a given size group. The purpose of the research is to increase the efficiency of machining by optimizing the design of a flexible fixture through the proper choice of parameters of the fixture elements. Fixture configurations were analyzed by means of the parametric optimization algorithm. The reserves for fixture optimization were revealed, and possible variants of the fixtures for the limiting size of the levers within the given size group were investigated. Based on the research of static structural, modal, and harmonic analyses of fixture configurations, optimal parameters of each element of the flexible fixture were found out. The optimal design of the fixture is proposed, which can provide multiaxis machining of all sizes of levers within a given size group with the required accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trojanowska, J., Zywicki, K., Machado, J.M., Varela, L.R.: Shortening changeover time – an industrial study. In: Proceedings of 10th Iberian Conference on Information Systems and Technologies, CISTI 2015, vol. II, pp. 92–97 (2015). https://doi.org/10.1109/cisti.2015.7170373

  2. Kłos, S.: Knowledge acquisition using computer simulation of a manufacturing system for preventive maintenance, information and software technologies. In: 24th International Conference, ICIST 2018, pp. 29–40. Springer (2018). https://doi.org/10.1007/978-3-319-99972-2_3

    Google Scholar 

  3. Kujawińska, A., Diering, M., Żywicki, K., et al.: Methodology supporting the planning of machining allowances in the wood industry. In: 12th International Conference on Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, vol. 649, 338–347 (2018)

    Google Scholar 

  4. Denysenko, Y., Dynnyk, O., Yashyna, T., et al.: Implementation of CALS-technologies in quality management of product life cycle processes. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing, DSMIE-2018. Lecture Notes in Mechanical Engineering, pp. 3–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93587-4_1

    Chapter  Google Scholar 

  5. Permyakov, A., Dobrotvorskiy, S., Dobrovolska, L., et al.: Computer modeling application for predicting of the passing of the high-speed milling machining hardened steel. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing, DSMIE-2018. Lecture Notes in Mechanical Engineering, pp. 135–145. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93587-4_15

    Chapter  Google Scholar 

  6. Vukelic, D., Simunovic, G., Saric, T., et al.: Computer-aided design and optimization of fixtures for plastic parts machining. J. Prod. Eng. 21(1), 49–54 (2018). https://doi.org/10.24867/JPE-2018-01-049

    Article  Google Scholar 

  7. Cioata, V.G., Kiss, I., Alexa, V., Ratiu, S.A.: The optimization of the position and the magnitude of the clamping forces in machining fixtures. In: IOP Conference Series: Materials Science and Engineering, vol. 200, no. 1, p. 012015 (2017). https://doi.org/10.1088/1757-899x/200/1/012015

    Article  Google Scholar 

  8. Pavlenko, I., Trojanowska, J., Ivanov, V., Liaposhchenko, O.: Scientific and methodological approach for the identification of mathematical models of mechanical systems by using artificial neural networks. In: Machado, J., Soares, F., Veiga, G. (eds.) International Conference on Innovation, Engineering and Entrepreneurship, Regional HELIX 2018. Lecture Notes in Electrical Engineering, vol. 505, pp. 299–306. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91334-6_41

    Google Scholar 

  9. Selvakumar, S., Arulshri, K.P., Padmanaban, K.P., Sasikumar, K.S.K.: Design and optimization of machining fixture layout using ANN and DOE. Int. J. Adv. Manuf. Technol. 65(9–12), 1573–1586 (2013). https://doi.org/10.1007/s00170-012-4281-2

    Article  Google Scholar 

  10. Vasundara, M., Padmanaban, K.P.: Recent developments on machining fixture layout design, analysis, and optimization using finite element method and evolutionary techniques. Int. J. Adv. Manuf. Technol. 70(1–4), 79–96 (2014). https://doi.org/10.1007/s00170-013-5249-6

    Article  Google Scholar 

  11. Dobrotvorskiy, S., Basova, Y., Ivanova, M., et al.: Forecasting of the productivity of parts machining by high-speed milling with the method of half-overlap. Diagnostyka 19(3), 37–42 (2018). https://doi.org/10.29354/diag/93136

    Article  Google Scholar 

  12. Basova, Y., Nutsubidze, K., Ivanova, M., et al.: Design and numerical simulation of the new design of the gripper for manipulating of the rotational parts. Diagnostyka 19(4), 11–18 (2018). https://doi.org/10.29354/diag/94030

    Article  Google Scholar 

  13. Krol, O., Sokolov, V.: Development of models and research into tooling for machining centers. East. Eur. J. Enterp. Technol. 3(1–93), 12–22 (2018). https://doi.org/10.15587/1729-4061.2018.131778

    Article  Google Scholar 

  14. Pavlenko, I., Simonovskiy, V., Ivanov, V., Zajac, J., Pitel’, J.: Application of artificial neural network for identification of bearing stiffness characteristics in rotor dynamics analysis. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing, DSMIE-2018. Lecture Notes in Mechanical Engineering, pp. 325–335. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93587-4_34

    Chapter  Google Scholar 

  15. Pavlenko, I., Liaposhchenko, A., Ochowiak, M., Demyanenko, M.: Solving the stationary hydroaeroelasticity problem for dynamic deflection elements of separation devices. Vib. Phys. Syst. 29, 2018026 (2019)

    Google Scholar 

  16. Costa, C., Silva, F.J.G., Gouveia, R.M., Martinho, R.P.: Development of hydraulic clamping tools for the machining of complex shape mechanical components. Proc. Manuf. 17, 563–570 (2018). https://doi.org/10.1016/j.promfg.2018.10.097

    Article  Google Scholar 

  17. Calabrese, M., Primo, T., del Prete, A.: Optimization of machining fixture for aeronautical thin-walled components. Proc. CIRP 60, 32–37 (2017). https://doi.org/10.1016/j.procir.2017.02.008

    Article  Google Scholar 

  18. Dong, Z., Jiao, L., Wang, X., et al.: FEA-based prediction of machined surface errors for dynamic fixture-workpiece system during milling process. Int. J. Adv. Manuf. Technol. 85(1–4), 299–315 (2016). https://doi.org/10.1007/s00170-015-7854-z

    Article  Google Scholar 

  19. Gonzalo, O., Seara, J.M., Guruceta, E., et al.: A method to minimize the workpiece deformation using a concept of intelligent fixture. Robot. Comput.-Integr. Manuf. 48, 209–218 (2017). https://doi.org/10.1016/j.rcim.2017.04.005

    Article  Google Scholar 

  20. Liao, Y., Hu, S.: An integrated model of a fixture – workpiece system for surface quality prediction. Int. J. Adv. Manuf. Technol. 17(11), 810–818 (2001). https://doi.org/10.1007/s001700170108

    Article  Google Scholar 

  21. Kumbhar, N.M., Patil, G.S., Mohite, S.S., Sutar, M.A.: Finite element modelling and analysis of workpiece-fixture system. Int. J. Appl. Res. Mech. Eng. 2(2), 60–65 (2012)

    Google Scholar 

  22. Kang, Y., Rong, Y., Yang, J.C.: Computer-aided fixture design verification. Part 3. Stability analysis. Int. J. Adv. Manuf. Technol. 21(10), 842–849 (2003). https://doi.org/10.1007/s00170-002-1401-4

    Article  Google Scholar 

  23. Asante, J.N.: Effect of fixture compliance and cutting conditions on workpiece stability. Int. J. Adv. Manuf. Technol. 48(1), 33–43 (2010). https://doi.org/10.1007/s00170-009-2284-4

    Article  Google Scholar 

  24. Cioata, V., Kiss, I.: The machining error due to contact deformation of workpiece – fixture system. Acta Tech. Corviniensis – Bull. Eng. 2(1), 33–36 (2009)

    Google Scholar 

  25. Karpus, V., Ivanov, V., Dehtiarov, I., et al.: Technological assurance of complex parts manufacturing. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing, DSMIE-2018. Lecture Notes in Mechanical Engineering, pp. 51–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93587-4_6

    Chapter  Google Scholar 

  26. Ivanov, V., Mital, D., Karpus, V., et al.: Numerical simulation of the system “fixture – workpiece” for levers machining. Int. J. Adv. Manuf. Technol. 91(1–4), 79–90 (2017). https://doi.org/10.1007/s00170-016-9701-2

    Article  Google Scholar 

  27. Ivanov, V., Dehtiarov, I., Denysenko, Y., et al.: Experimental diagnostic research of fixture. Diagnostyka 19(3), 3–9 (2018). https://doi.org/10.29354/diag/92293

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanov, V., Dehtiarov, I., Pavlenko, I., Liaposhchenko, O., Zaloga, V. (2019). Parametric Optimization of Fixtures for Multiaxis Machining of Parts. In: Hamrol, A., Kujawińska, A., Barraza, M. (eds) Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-18789-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18789-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18788-0

  • Online ISBN: 978-3-030-18789-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics