Skip to main content

Lipopolysaccharide Biosynthesis and Transport to the Outer Membrane of Gram-Negative Bacteria

  • Chapter
  • First Online:
Bacterial Cell Walls and Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 92))

Abstract

Gram-negative bacteria have an outer membrane that is positioned at the frontline of the cell’s interaction with the environment and that serves as a barrier against noxious molecules including many antibiotics. This protective function mainly relies on lipopolysaccharide, a complex glycolipid located in the outer leaflet of the outer membrane. In this chapter we will first summarize lipopolysaccharide structure, functions and biosynthetic pathway and then we will discuss how it is transported and assembled to the cell surface. This is a remarkably complex process, as amphipathic lipopolysaccharide molecules must traverse three different cellular compartments to reach their final destination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abellon-Ruiz J, Kaptan SS, Basle A, Claudi B, Bumann D, Kleinekathofer U (2017) Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nat Microbiol 2(12):1616–1623

    Article  CAS  PubMed  Google Scholar 

  • Anderson MS, Bull HG, Galloway SM, Kelly TM, Mohan S, Radika K, Raetz CR (1993) UDP-N-acetylglucosamine acyltransferase of Escherichia coli. The first step of endotoxin biosynthesis is thermodynamically unfavorable. J Biol Chem 268(26):19858–19865

    Google Scholar 

  • Anderson MS, Raetz CR (1987) Biosynthesis of lipid A precursors in Escherichia coli. A cytoplasmic acyltransferase that converts UDP-N-acetylglucosamine to UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine. J Biol Chem 262(11):5159–5169

    Google Scholar 

  • Asmar AT, Ferreira JL, Cohen EJ, Cho SH, Beeby M, Hughes KT, Collet JF (2017) Communication across the bacterial cell envelope depends on the size of the periplasm. PLoS Biol 15(12):e2004303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Babinski KJ, Kanjilal SJ, Raetz CR (2002) Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. J Biol Chem 277(29):25947–25956

    Article  CAS  PubMed  Google Scholar 

  • Balibar CJ, Grabowicz M (2016) Mutant alleles of lptD increase the permeability of Pseudomonas aeruginosa and define determinants of intrinsic resistance to antibiotics. Antimicrob Agents Chemother 60(2):845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belunis CJ, Raetz CR (1992) Biosynthesis of endotoxins. Purification and catalytic properties of 3-deoxy-d-manno-octulosonic acid transferase from Escherichia coli. J Biol Chem 267(14):9988–9997

    Google Scholar 

  • Benedet M, Falchi FA, Puccio S, Di Benedetto C, Peano C, Polissi A, Deho G (2016) The lack of the essential LptC protein in the trans-envelope lipopolysaccharide transport machine is circumvented by suppressor mutations in LptF, an inner membrane component of the Escherichia coli transporter. PLoS ONE 11(8):e0161354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertani BR, Taylor RJ, Nagy E, Kahne D, Ruiz N (2018) A cluster of residues in the lipopolysaccharide exporter that selects substrate variants for transport to the outer membrane. Mol Microbiol 109(4):541–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop RE (2005) The lipid A palmitoyltransferase PagP: molecular mechanisms and role in bacterial pathogenesis. Mol Microbiol 57(4):900–912

    Article  CAS  PubMed  Google Scholar 

  • Bishop RE (2008) Structural biology of membrane-intrinsic beta-barrel enzymes: sentinels of the bacterial outer membrane. Biochim Biophys Acta 1778(9):1881–1896

    Article  CAS  PubMed  Google Scholar 

  • Bishop RE, Gibbons H, Guina T, Trent MS, Miller SI, Raetz CR (2000) Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. EMBO J 19(19):5071–5080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K, Wojtowicz D, Barnard TJ, Gumbart JC, Buchanan SK (2016) Structural and functional characterization of the LPS transporter LptDE from gram-negative pathogens. Structure 24(6):965–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowyer A, Baardsnes J, Ajamian E, Zhang L, Cygler M (2011) Characterization of interactions between LPS transport proteins of the Lpt system. Biochem Biophys Res Commun 404(4):1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Braun M, Silhavy TJ (2002) Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol Microbiol 45(5):1289–1302

    Article  CAS  PubMed  Google Scholar 

  • Brozek KA, Raetz CR (1990) Biosynthesis of lipid A in Escherichia coli. Acyl carrier protein-dependent incorporation of laurate and myristate. J Biol Chem 265(26):15410–15417

    Google Scholar 

  • Carpenter TS, Parkin J, Khalid S (2016) The free energy of small solute permeation through the Escherichia coli outer membrane has a distinctly asymmetric profile. J Phys Chem Lett 7(17):3446–3451

    Article  CAS  PubMed  Google Scholar 

  • Chimalakonda G, Ruiz N, Chng SS, Garner RA, Kahne D, Silhavy TJ (2011) Lipoprotein LptE is required for the assembly of LptD by the beta-barrel assembly machine in the outer membrane of Escherichia coli. Proc Natl Acad Sci USA 108(6):2492–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chng SS, Gronenberg LS, Kahne D (2010a) Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex. Biochemistry 49(22):4565–4567

    Article  CAS  PubMed  Google Scholar 

  • Chng SS, Ruiz N, Chimalakonda G, Silhavy TJ, Kahne D (2010b) Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane. Proc Natl Acad Sci USA 107(12):5363–5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chng SS, Xue M, Garner RA, Kadokura H, Boyd D, Beckwith J, Kahne D (2012) Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export. Science 337(6102):1665–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong ZS, Woo WF, Chng SS (2015) Osmoporin OmpC forms a complex with MlaA to maintain outer membrane lipid asymmetry in Escherichia coli. Mol Microbiol 98(6):1133–1146

    Article  CAS  PubMed  Google Scholar 

  • Cipolla L, Polissi A, Airoldi C, Galliani P, Sperandeo P, Nicotra F (2009) The Kdo biosynthetic pathway toward OM biogenesis as target in antibacterial drug design and development. Curr Drug Discov Technol 6(1):19–33

    Article  CAS  PubMed  Google Scholar 

  • Clementz T, Bednarski JJ, Raetz CR (1996) Function of the htrB high temperature requirement gene of Escherichia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate. J Biol Chem 271(20):12095–12102

    Article  CAS  PubMed  Google Scholar 

  • Clementz T, Zhou Z, Raetz CR (1997) Function of the Escherichia coli msbB gene, a multicopy suppressor of htrB knockouts, in the acylation of lipid A. Acylation by MsbB follows laurate incorporation by HtrB. J Biol Chem 272(16):10353–10360

    Google Scholar 

  • Dalebroux ZD, Matamouros S, Whittington D, Bishop RE, Miller SI (2014) PhoPQ regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer membrane. Proc Natl Acad Sci USA 111(5):1963–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72(2):317–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker N (2000) Outer-membrane phospholipase A: known structure, unknown biological function. Mol Microbiol 35(4):711–717

    Article  CAS  PubMed  Google Scholar 

  • Doerrler WT, Gibbons HS, Raetz CR (2004) MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J Biol Chem 279(43):45102–45109

    Article  CAS  PubMed  Google Scholar 

  • Doerrler WT, Raetz CR (2002) ATPase activity of the MsbA lipid flippase of Escherichia coli. J Biol Chem 277(39):36697–36705

    Article  CAS  PubMed  Google Scholar 

  • Doerrler WT, Reedy MC, Raetz CR (2001) An Escherichia coli mutant defective in lipid export. J Biol Chem 276(15):11461–11464

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Xiang Q, Gu Y, Wang Z, Paterson NG, Stansfeld PJ, He C, Zhang Y, Wang W, Dong C (2014) Structural basis for outer membrane lipopolysaccharide insertion. Nature 511(7507):52–56

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Zhang Z, Tang X, Paterson NG (2017) Structural and functional insights into the lipopolysaccharide ABC transporter LptB2FG. Nat Commun 8(1):222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doshi R, van Veen HW (2013) Substrate binding stabilizes a pre-translocation intermediate in the ATP-binding cassette transport protein MsbA. J Biol Chem 288(30):21638–21647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckford PD, Sharom FJ (2008) Functional characterization of Escherichia coli MsbA: interaction with nucleotides and substrates. J Biol Chem 283(19):12840–12850

    Article  CAS  PubMed  Google Scholar 

  • Eckford PD, Sharom FJ (2010) The reconstituted Escherichia coli MsbA protein displays lipid flippase activity. Biochem J 429(1):195–203

    Article  CAS  PubMed  Google Scholar 

  • Emiola A, Andrews SS, Heller C, George J (2016) Crosstalk between the lipopolysaccharide and phospholipid pathways during outer membrane biogenesis in Escherichia coli. Proc Natl Acad Sci U S A 113(11):3108–3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ercan B, Low WY, Liu X, Chng SS (2018) Characterization of interactions and phospholipid transfer between substrate binding proteins of the OmpC-Mla system. Biochemistry. https://doi.org/10.1021/acs.biochem.8b00897

    Article  PubMed  CAS  Google Scholar 

  • Ernst RK, Yi EC, Guo L, Lim KB, Burns JL, Hackett M, Miller SI (1999) Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286(5444):1561–1565

    Article  CAS  PubMed  Google Scholar 

  • Fairman JW, Noinaj N, Buchanan SK (2011) The structural biology of beta-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol 21(4):523–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falchi FA, Maccagni EA, Puccio S, Peano C, De Castro C, Palmigiano A, Garozzo D, Martorana AM, Polissi A, Dehò G, Sperandeo P (2018) Mutation and suppressor analysis of the essential lipopolysaccharide transport protein LptA reveals strategies to overcome severe outer membrane permeability defects in Escherichia coli. J Bacteriol 200(2):e00487–17

    Google Scholar 

  • Freinkman E, Chng SS, Kahne D (2011) The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel. Proc Natl Acad Sci USA 108(6):2486–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freinkman E, Okuda S, Ruiz N, Kahne D (2012) Regulated assembly of the transenvelope protein complex required for lipopolysaccharide export. Biochemistry 51(24):4800–4806

    Article  CAS  PubMed  Google Scholar 

  • Fuhrer F, Langklotz S, Narberhaus F (2006) The C-terminal end of LpxC is required for degradation by the FtsH protease. Mol Microbiol 59(3):1025–1036

    Article  PubMed  CAS  Google Scholar 

  • Greenfield LK, Whitfield C (2012) Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydr Res 356:12–24

    Article  CAS  PubMed  Google Scholar 

  • Griffiss JM, O’Brien JP, Yamasaki R, Williams GD, Rice PA, Schneider H (1987) Physical heterogeneity of neisserial lipooligosaccharides reflects oligosaccharides that differ in apparent molecular weight, chemical composition, and antigenic expression. Infect Immun 55(8):1792–1800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Stansfeld PJ, Zeng Y, Dong H, Wang W, Dong C (2015) Lipopolysaccharide is inserted into the outer membrane through an intramembrane hole, a lumen gate, and the lateral opening of LptD. Structure 23(3):496–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamad MA, Di Lorenzo F, Molinaro A, Valvano MA (2012) Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia. Mol Microbiol 85(5):962–974

    Article  CAS  PubMed  Google Scholar 

  • Han W, Wu B, Li L, Zhao G, Woodward R, Pettit N, Zhao G, Cai L, Thon V, Wang PG, Wang PG (2012) Defining function of lipopolysaccharide O-antigen ligase WaaL using chemoenzymatically synthesized substrates. J Biol Chem 287(8):5357–5365

    Article  CAS  PubMed  Google Scholar 

  • Ho H, Miu A, Alexander MK, Garcia NK, Oh A, Zilberleyb I, Reichelt M, Austin CD, Tam C, Shriver S, Hu H, Labadie SS, Liang J, Wang L, Wang J, Lu Y, Purkey HE, Quinn J, Franke Y, Clark K, Beresini MH, Tan MW, Sellers BD, Maurer T, Koehler MFT, Wecksler AT, Kiefer JR, Verma V, Xu Y, Nishiyama M, Payandeh J, Koth CM (2018) Structural basis for dual-mode inhibition of the ABC transporter MsbA. Nature 557(7704):196–201

    Article  CAS  PubMed  Google Scholar 

  • Holst O (2007) The structures of core regions from enterobacterial lipopolysaccharides—an update. FEMS Microbiol Lett 271(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Kagan JC (2017) Lipopolysaccharide detection across the kingdoms of life. Trends Immunol 38(10):696–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamio Y, Nikaido H (1976) Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. Biochemistry 15(12):2561–2570

    Article  CAS  PubMed  Google Scholar 

  • Karow M, Georgopoulos C (1993) The essential Escherichia coli msbA gene, a multicopy suppressor of null mutations in the htrB gene, is related to the universally conserved family of ATP-dependent translocators. Mol Microbiol 7(1):69–79

    Article  CAS  PubMed  Google Scholar 

  • Katz C, Ron EZ (2008) Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J Bacteriol 190(21):7117–7122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly TM, Stachula SA, Raetz CR, Anderson MS (1993) The firA gene of Escherichia coli encodes UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase. The third step of endotoxin biosynthesis. J Biol Chem 268(26):19866–19874

    Google Scholar 

  • King JD, Kocincova D, Westman EL, Lam JS (2009) Review: lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 15(5):261–312

    Article  CAS  PubMed  Google Scholar 

  • Klein G, Kobylak N, Lindner B, Stupak A, Raina S (2014) Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein. J Biol Chem 289(21):14829–14853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kol MA, van Dalen A, de Kroon AI, de Kruijff B (2003) Translocation of phospholipids is facilitated by a subset of membrane-spanning proteins of the bacterial cytoplasmic membrane. J Biol Chem 278(27):24586–24593

    Article  CAS  PubMed  Google Scholar 

  • Konovalova A, Kahne DE, Silhavy TJ (2017) Outer membrane biogenesis. Annu Rev Microbiol 71:539–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konovalova A, Silhavy TJ (2015) Outer membrane lipoprotein biogenesis: Lol is not the end. Philos Trans R Soc Lond B Biol Sci 370(1679):20150030

    Article  CAS  Google Scholar 

  • Laguri C, Sperandeo P, Pounot K, Ayala I, Silipo A, Bougault CM, Molinaro A, Polissi A, Simorre JP (2017) Interaction of lipopolysaccharides at intermolecular sites of the periplasmic Lpt transport assembly. Sci Rep 7(1):9715

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee CJ, Liang X, Wu Q, Najeeb J, Zhao J, Gopalaswamy R, Titecat M, Sebbane F, Lemaitre N, Toone EJ, Zhou P (2016) Drug design from the cryptic inhibitor envelope. Nat Commun 7:10638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaitre N, Liang X, Najeeb J, Lee CJ, Titecat M, Leteurtre E, Simonet M, Toone EJ, Zhou P, Sebbane F (2017) Curative treatment of severe gram-negative bacterial infections by a new class of antibiotics targeting LpxC. MBio 8(4):e00674–17

    Google Scholar 

  • Lerouge I, Vanderleyden J (2002) O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 26(1):17–47

    Article  CAS  PubMed  Google Scholar 

  • Li X, Gu Y, Dong H, Wang W, Dong C (2015) Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane. Sci Rep 5:11883

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D, Reeves PR (1994) Presence of different O antigen forms in three isolates of one clone of Escherichia coli. Genetics 138(1):6–10

    CAS  PubMed  Google Scholar 

  • Locher KP (2016) Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 23(6):487–493

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Yang X, Yu S, Shi H, Wang K, Xiao L, Zhu G, Sun C, Li T, Li D, Zhang X, Zhou M, Huang Y (2017) Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG. Nat Struct Mol Biol 24(5):469–474

    Article  CAS  PubMed  Google Scholar 

  • Mahalakshmi S, Sunayana MR, SaiSree L, Reddy M (2014) yciM is an essential gene required for regulation of lipopolysaccharide synthesis in Escherichia coli. Mol Microbiol 91(1):145–157

    Article  CAS  PubMed  Google Scholar 

  • Maldonado RF, Sa-Correia I, Valvano MA (2016) Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev 40(4):480–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinverni JC, Silhavy TJ (2009) An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane. Proc Natl Acad Sci USA 106(19):8009–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malojčić G, Andres D, Grabowicz M, George AH, Ruiz N, Silhavy TJ, Kahne D (2014) LptE binds to and alters the physical state of LPS to catalyze its assembly at the cell surface. Proc Natl Acad Sci USA 111(26):9467–9472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mamat U, Meredith TC, Aggarwal P, Kuhl A, Kirchhoff P, Lindner B, Hanuszkiewicz A, Sun J, Holst O, Woodard RW (2008) Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-d-manno-oct-2-ulosonic acid-depleted Escherichia coli. Mol Microbiol 67(3):633–648

    Article  CAS  PubMed  Google Scholar 

  • Martorana AM, Sperandeo P, Polissi A, Deho G (2011) Complex transcriptional organization regulates an Escherichia coli locus implicated in lipopolysaccharide biogenesis. Res Microbiol 162(5):470–482

    Article  CAS  PubMed  Google Scholar 

  • Martorana AM, Benedet M, Maccagni EA, Sperandeo P, Villa R, Deho G, Polissi A (2016) Functional interaction between the cytoplasmic ABC protein LptB and the inner membrane LptC protein, components of the lipopolysaccharide transport machinery in Escherichia coli. J Bacteriol 198(16):2192–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May KL, Silhavy TJ (2018) The Escherichia coli phospholipase PldA regulates outer membrane homeostasis via lipid signaling. MBio 9(2):e00379–18

    Google Scholar 

  • Meredith TC, Aggarwal P, Mamat U, Lindner B, Woodard RW (2006) Redefining the requisite lipopolysaccharide structure in Escherichia coli. ACS Chem Biol 1(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Merten JA, Schultz KM, Klug CS (2012) Concentration-dependent oligomerization and oligomeric arrangement of LptA. Protein Sci 21(2):211–218

    Article  CAS  PubMed  Google Scholar 

  • Mi W, Li Y, Yoon SH, Ernst RK, Walz T, Liao M (2017) Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549(7671):233–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake K (2004) Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 12(4):186–192

    Article  CAS  PubMed  Google Scholar 

  • Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, Henry R, Crane B, St Michael F, Cox AD, Adler B, Nation RL, Li J, Boyce JD (2010) Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 54(12):4971–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narita S, Tokuda H (2009) Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides. FEBS Lett 583(13):2160–2164

    Article  CAS  PubMed  Google Scholar 

  • Needham BD, Carroll SM, Giles DK, Georgiou G, Whiteley M, Trent MS (2013) Modulating the innate immune response by combinatorial engineering of endotoxin. Proc Natl Acad Sci USA 110(4):1464–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikaido H (2005) Restoring permeability barrier function to outer membrane. Chem Biol 12(5):507–509

    Article  CAS  PubMed  Google Scholar 

  • Noinaj N, Gumbart JC, Buchanan SK (2017) The beta-barrel assembly machinery in motion. Nat Rev Microbiol 15(4):197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, Young K, Su LH, Fierke CA, Jackman JE, Raetz CR, Coleman J, Tomoyasu T, Matsuzawa H (1999) Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol 31(3):833–844

    Article  CAS  PubMed  Google Scholar 

  • Okuda S, Freinkman E, Kahne D (2012) Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 338(6111):1214–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D (2016) Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat Rev Microbiol 14(6):337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda S, Tokuda H (2011) Lipoprotein sorting in bacteria. Annu Rev Microbiol 65:239–259

    Article  CAS  PubMed  Google Scholar 

  • Paciello I, Silipo A, Lembo-Fazio L, Curcuru L, Zumsteg A, Noel G, Ciancarella V, Sturiale L, Molinaro A, Bernardini ML (2013) Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proc Natl Acad Sci USA 110(46):E4345–E4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park BS, Lee JO (2013) Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 45:e66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458(7242):1191–1195

    Article  CAS  PubMed  Google Scholar 

  • Peng D, Hong W, Choudhury BP, Carlson RW, Gu XX (2005) Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect Immun 73(11):7569–7577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peppler MS, Schrumpf ME (1984) Phenotypic variation and modulation in Bordetella bronchiseptica. Infect Immun 44(3):681–687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polissi A, Georgopoulos C (1996) Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter. Mol Microbiol 20(6):1221–1233

    Article  CAS  PubMed  Google Scholar 

  • Qiao S, Luo Q, Zhao Y, Zhang XC, Huang Y (2014) Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. Nature 511(7507):108–111

    Article  CAS  PubMed  Google Scholar 

  • Radika K, Raetz CR (1988) Purification and properties of lipid A disaccharide synthase of Escherichia coli. J Biol Chem 263(29):14859–14867

    CAS  PubMed  Google Scholar 

  • Raetz CR, Guan Z, Ingram BO, Six DA, Song F, Wang X, Zhao J (2009) Discovery of new biosynthetic pathways: the lipid A story. J Lipid Res 50(Suppl):S103–S108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  PubMed  Google Scholar 

  • Raetz CRH, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76(1):295–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray BL, Raetz CR (1987) The biosynthesis of gram-negative endotoxin. A novel kinase in Escherichia coli membranes that incorporates the 4′-phosphate of lipid A. J Biol Chem 262(3):1122–1128

    Google Scholar 

  • Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10(3):218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan X, Loyola DE, Marolda CL, Perez-Donoso JM, Valvano MA (2012) The WaaL O-antigen lipopolysaccharide ligase has features in common with metal ion-independent inverting glycosyltransferases. Glycobiology 22(2):288–299

    Article  CAS  PubMed  Google Scholar 

  • Ruiz N, Chng SS, Hiniker A, Kahne D, Silhavy TJ (2010) Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. Proc Natl Acad Sci USA 107(27):12245–12250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz N, Gronenberg LS, Kahne D, Silhavy TJ (2008) Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli. Proc Natl Acad Sci USA 105(14):5537–5542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz N, Kahne D, Silhavy TJ (2009) Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat Rev Microbiol 7(9):677–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankaran K, Wu HC (1994) Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 269(31):19701–19706

    Google Scholar 

  • Santambrogio C, Sperandeo P, Villa R, Sobott F, Polissi A, Grandori R (2013) LptA assembles into rod-like oligomers involving disorder-to-order transitions. J Am Soc Mass Spectrom 24(10):1593–1602

    Article  CAS  PubMed  Google Scholar 

  • Schultz KM, Feix JB, Klug CS (2013) Disruption of LptA oligomerization and affinity of the LptA-LptC interaction. Protein Sci 22(11):1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz GE (2002) The structure of bacterial outer membrane proteins. Biochim Biophys Acta 1565(2):308–317

    Article  CAS  PubMed  Google Scholar 

  • Sherman DJ, Lazarus MB, Murphy L, Liu C, Walker S, Ruiz N, Kahne D (2014) Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport. Proc Natl Acad Sci USA 111(13):4982–4987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman DJ, Xie R, Taylor RJ, George AH, Okuda S, Foster PJ, Needleman DJ, Kahne D (2018) Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge. Science 359(6377):798–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siarheyeva A, Sharom FJ (2009) The ABC transporter MsbA interacts with lipid A and amphipathic drugs at different sites. Biochem J 419(2):317–328

    Article  CAS  PubMed  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simpson BW, Owens TW, Orabella MJ, Davis RM, May JM, Trauger SA, Kahne D, Ruiz N (2016) Identification of residues in the lipopolysaccharide ABC transporter that coordinate ATPase activity with extractor function. MBio 7(5):e01729–16

    Google Scholar 

  • Sperandeo P, Cescutti R, Villa R, Di Benedetto C, Candia D, Deho G, Polissi A (2007) Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. J Bacteriol 189(1):244–253

    Article  CAS  PubMed  Google Scholar 

  • Sperandeo P, Lau FK, Carpentieri A, De Castro C, Molinaro A, Deho G, Silhavy TJ, Polissi A (2008) Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J Bacteriol 190(13):4460–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperandeo P, Villa R, Martorana AM, Samalikova M, Grandori R, Deho G, Polissi A (2011) New insights into the Lpt machinery for lipopolysaccharide transport to the cell surface: LptA-LptC interaction and LptA stability as sensors of a properly assembled transenvelope complex. J Bacteriol 193(5):1042–1053

    Article  CAS  PubMed  Google Scholar 

  • Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, Van der Meijden B, Bernardini F, Lederer A, Dias RL, Misson PE, Henze H, Zumbrunn J, Gombert FO, Obrecht D, Hunziker P, Schauer S, Ziegler U, Käch A, Eberl L, Riedel K, DeMarco SJ, Robinson JA (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327(5968):1010–1013

    Article  CAS  PubMed  Google Scholar 

  • Steeghs L, den Hartog R, den Boer A, Zomer B, Roholl P, van der Ley P (1998) Meningitis bacterium is viable without endotoxin. Nature 392(6675):449–450

    Article  CAS  PubMed  Google Scholar 

  • Stevenson G, Neal B, Liu D, Hobbs M, Packer NH, Batley M, Redmond JW, Lindquist L, Reeves P (1994) Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster. J Bacteriol 176(13):4144–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suits MDL, Sperandeo P, Dehò G, Polissi A, Jia Z (2008) Novel structure of the conserved gram-negative lipopolysaccharide transport protein a and mutagenesis analysis. J Mol Biol 380(3):476–488

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18(10):464–470

    Article  CAS  PubMed  Google Scholar 

  • Sutterlin HA, Shi H, May KL, Miguel A, Khare S, Huang KC, Silhavy TJ (2016) Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. Proc Natl Acad Sci USA 113(11):E1565–E1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tefsen B, Bos MP, Beckers F, Tommassen J, de Cock H (2005a) MsbA is not required for phospholipid transport in Neisseria meningitidis. J Biol Chem 280(43):35961–35966

    Article  CAS  PubMed  Google Scholar 

  • Tefsen B, Geurtsen J, Beckers F, Tommassen J, de Cock H (2005b) Lipopolysaccharide transport to the bacterial outer membrane in spheroplasts. J Biol Chem 280(6):4504–4509

    Article  CAS  PubMed  Google Scholar 

  • Thomas C, Tampe R (2018) Multifaceted structures and mechanisms of ABC transport systems in health and disease. Curr Opin Struct Biol 51:116–128

    Article  CAS  PubMed  Google Scholar 

  • Thong S, Ercan B, Torta F, Fong ZY, Wong HY, Wenk MR, Chng SS (2016) Defining key roles for auxiliary proteins in an ABC transporter that maintains bacterial outer membrane lipid asymmetry. Elife 5:e19042

    Google Scholar 

  • Tran AX, Dong C, Whitfield C (2010) Structure and functional analysis of LptC, a conserved membrane protein involved in the lipopolysaccharide export pathway in Escherichia coli. J Biol Chem 285(43):33529–33539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa R, Martorana AM, Okuda S, Gourlay LJ, Nardini M, Sperandeo P, Dehò G, Bolognesi M, Kahne D, Polissi A (2013) The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide export is assembled via conserved structurally homologous domains. J Bacteriol 195(5):1100–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss BJ, Trent MS (2018) LPS transport: flipping out over MsbA. Curr Biol 28(1):R30–r33

    Article  CAS  PubMed  Google Scholar 

  • Ward A, Reyes CL, Yu J, Roth CB, Chang G (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 104(48):19005–19010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werneburg M, Zerbe K, Juhas M, Bigler L, Stalder U, Kaech A, Ziegler U, Obrecht D, Eberl L, Robinson JA (2012) Inhibition of lipopolysaccharide transport to the outer membrane in Pseudomonas aeruginosa by peptidomimetic antibiotics. ChemBioChem 13(12):1767–1775

    Article  CAS  PubMed  Google Scholar 

  • Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68

    Article  CAS  PubMed  Google Scholar 

  • Wu T, McCandlish AC, Gronenberg LS, Chng SS, Silhavy TJ, Kahne D (2006) Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc Natl Acad Sci USA 103(31):11754–11759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie R, Taylor RJ, Kahne D (2018) Outer membrane translocon communicates with inner membrane ATPase To stop lipopolysaccharide transport. Science 140(40):12691–12694

    CAS  Google Scholar 

  • Yeow J, Tan KW, Holdbrook DA, Chong ZS, Marzinek JK, Bond PJ, Chng SS (2018) The architecture of the OmpC-MlaA complex sheds light on the maintenance of outer membrane lipid asymmetry in Escherichia coli. J Biol Chem 293(29):11325–11340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young K, Silver LL, Bramhill D, Cameron P, Eveland SS, Raetz CR, Hyland SA, Anderson MS (1995) The envA permeability/cell division gene of Escherichia coli encodes the second enzyme of lipid A biosynthesis. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. J Biol Chem 270(51):30384–30391

    Google Scholar 

  • Zabawa TP, Pucci MJ, Parr TR Jr, Lister T (2016) Treatment of Gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol 33:7–12

    Article  CAS  PubMed  Google Scholar 

  • Zeth K, Thein M (2010) Porins in prokaryotes and eukaryotes: common themes and variations. Biochem J 431(1):13–22

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Meredith TC, Kahne D (2013) On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr Opin Microbiol 16(6):779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra M. Martorana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sperandeo, P., Martorana, A.M., Polissi, A. (2019). Lipopolysaccharide Biosynthesis and Transport to the Outer Membrane of Gram-Negative Bacteria. In: Kuhn, A. (eds) Bacterial Cell Walls and Membranes . Subcellular Biochemistry, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-030-18768-2_2

Download citation

Publish with us

Policies and ethics