Skip to main content

Archaeal Cell Walls

  • Chapter
  • First Online:
Book cover Bacterial Cell Walls and Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 92))

Abstract

The cell wall of archaea, as of any other prokaryote, is surrounding the cell outside the cytoplasmic membrane and is mediating the interaction with the environment. In this regard, it can be involved in cell shape maintenance, protection against virus, heat, acidity or alkalinity. Throughout the formation of pore like structures, it can resemble a micro sieve and thereby enable or disable transport processes. In some cases, cell wall components can make up more than 10% of the whole cellular protein. So far, a great variety of different cell envelope structures and compounds have be found and described in detail. From all archaeal cell walls described so far, the most common structure is the S-layer. Other archaeal cell wall structures are pseudomurein, methanochondroitin, glutaminylglycan, sulfated heteropolysaccharides and protein sheaths and they are sometimes associated with additional proteins and protein complexes like the STABLE protease or the bindosome. Recent advances in electron microscopy also illustrated the presence of an outer(most) cellular membrane within several archaeal groups, comparable to the Gram-negative cell wall within bacteria. Each new cell wall structure that can be investigated in detail and that can be assigned with a specific function helps us to understand, how the earliest cells on earth might have looked like.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akça E, Claus H, Schultz N, Karbach G, Schlott B, Debaerdemaeker T, Declercq J-P, König H (2002) Genes and derived amino acid sequences of S-layer proteins from mesophilic, thermophilic and extremely thermophilic methanococci. Extremophiles 6:351–358. https://doi.org/10.1007/s00792-001-0264-1

    Article  CAS  PubMed  Google Scholar 

  • Albers S-V, Meyer BH (2011) The archaeal cell envelope. Nat Rev Microbiol 9:414–426

    Article  CAS  PubMed  Google Scholar 

  • Arbing MA, Chan S, Shin A, Phan T, Ahn CJ, Rohlin L, Gunsalus RP (2012) Structure of the surface layer of the methanogenic archaeon Methanosarcina acetivorans. PNAS 109:11812–11817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267. https://doi.org/10.1155/2004/204953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumeister W, Lembcke G (1992) Structural features of archaebacterial cell envelopes. J Bioenerg Biomembr 24:567–575

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Patel GB, Harris BJ, Sprott GD (1986) The ultrastructure of Methanothrix concilii, a mesophilic aceticlastic methanogen. Can J Microbiol 32:703–710

    Article  Google Scholar 

  • Beveridge TJ, Graham L (1991) Surface layers of bacteria. Microbiol Mol Biol Rev 55:684–705

    CAS  Google Scholar 

  • Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp-nov., represents a novel group of archaea extending the upper temperature limit for life to 113 degrees C. Extremophiles 1(1):14–21

    Google Scholar 

  • Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genom 7:169

    Article  CAS  Google Scholar 

  • Boone DR, Mah RA (1987) Effects of calcium, magnesium, pH, and extent of growth on the morphology of Methanosarcina barkeri S-6. Appl Environ Microbiol 53:1699–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AD, Cho KJ (1970) The cell walls of extremely halophilic cocci. Gram-positive bacteria lacking muramic acid. J Gen Microbiol 62:267–270. https://doi.org/10.1099/00221287-62-2-267

    Article  CAS  PubMed  Google Scholar 

  • Burghardt T, Näther DJ, Junglas B, Huber H, Rachel R (2007) The dominating outer membrane protein of the hyperthermophilic archaeum Ignicoccus hospitalis: a novel pore-forming complex. Mol Microbiol 63:166–176

    Article  CAS  PubMed  Google Scholar 

  • Burghardt T, Saller M, Gürster S, Müller D, Meyer C, Jahn U, Hochmuth E, Deutzmann R, Siedler F, Babinger P, Wirth R, Huber H, Rachel R (2008) Insight into the proteome of the hyperthermophilic crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins. Arch Microbiol 190:379–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodriguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. IJSEM 57:387–392

    CAS  PubMed  Google Scholar 

  • Claus H, Akça E, Schultz N, Karbach G, Schlott B, Debaerdemaeker T, Declercq J-P, König H (2001) Surface (glyco-)proteins: primary structure and crystallization under microgravity conditions. In: Proceedings of the first European workshop on exo-/astro-biology, ESA SP-496, Frascati, pp 806–809

    Google Scholar 

  • Claus H, Akça E, Debaerdemaeker T, Evrard D, Declercq JP, König H (2002) Primary structure of selected archaeal mesophilic and extremely thermophilic outer surface layer proteins. Syst Appl Microbiol 25:3–12

    Article  CAS  PubMed  Google Scholar 

  • Claus H, Akça E, Debaerdemaeker T, Evrard D, Declercq JP, Robin Harris J, Schlott B, König H (2005) Molecular organization of selected prokaryotic S-layer proteins. Can J Microbiol 51:731–743

    Article  CAS  PubMed  Google Scholar 

  • Comolli LR, Baker BJ, Downing KH, Siegerist CE, Banfield JF (2009) Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. ISME J 3:159–167

    Article  CAS  PubMed  Google Scholar 

  • Comolli LR, Banfield JF (2014) Inter-species interconnections in acid mine drainage microbial communities. Front Microbiol 5:367

    PubMed  PubMed Central  Google Scholar 

  • Darland G, Brock TD, Samsonoff W, Conti SF (1970) A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170:1416–1418

    Article  CAS  PubMed  Google Scholar 

  • Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. IJSEM 62:1902–1907

    CAS  PubMed  Google Scholar 

  • Dueholm MS, Larsen P, Finster K, Stenvang MR, Christiansen G, Vad BS, Bøggild A, Otzen DE, Nielsen PH (2015) The tubular sheaths encasing Methanosaeta thermophila filaments are functional amyloids. J Biol Chem 290(33):20590–20600. https://doi.org/10.1074/jbc.M115.654780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler J (2003) Facing extremes: archaeal surface-layer (glyco)proteins. Microbiology 149:3347–3351

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt H, Peters J (1998) Structural research on surface layers: a focus on stability, surface layer homology, and surface layer-cell wall interactions. J Struct Biol 124:276–302

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt H (2007a) Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol 160:115–124

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt H (2007b) Mechanism of osmoprotection by archaeal S-layers: a theoretical study. J Struct Biol 160:190–199

    Article  CAS  PubMed  Google Scholar 

  • Ferry JG, Kastead KA (2007) Methanogenesis. In: Cavicchioli R (ed) Archaea—molecular and cell biology. ASM Press, Washington, DC, pp 288–314

    Google Scholar 

  • Firtel M, Southam G, Harauz G, Beveridge TJ (1993) Characterization of the cell wall of the sheathed methanogen Methanospirillum hungatei Gp1 as an S-layer. J Bacteriol 175:7550–7560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francoleon DR, Boontheung P, Yang Y, Kim U, Ytterberg AJ, Denny PA, Denny PC, Loo JA, Gunsalus RP, Ogorzalek Loo RR (2009) S-layer surface-accessible and Concanavalin A binding proteins of Methanosarcina acetivorans and Methanosarcina mazei. J Proteome Res 8:1972–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288

    Article  CAS  PubMed  Google Scholar 

  • Gongadze GM, Kostyukova AS, Miroshnichenko ML, Bonch-Osmolovskaya EA (1993) Regular proteinaceous layers of Thermococcus stetteri cell envelope. Curr Biol 27:5–9

    CAS  Google Scholar 

  • Gorlas A, Croce O, Oberto J, Gauliard E, Forterre P, Marguet E (2014) Thermococcus nautili sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal deep-sea vent. Int J Syst Evol Microbiol 64:1802–1810. https://doi.org/10.1099/ijs.0.060376-0

    Article  CAS  PubMed  Google Scholar 

  • Gulik A, Luzzati V, DeRosa M, Gambacorta A (1988) Tetraether lipid components from a thermoacidophilic archaebacterium. Chemical structure and physical polymorphism. J Mol Microbiol 201:429–435

    CAS  Google Scholar 

  • Haney PJ, Badger JH, Buldak GL, Reich CI, Woese CR, Olsen GJ (1999) Thermal adaption analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci USA 36:3578–3583

    Article  Google Scholar 

  • Hartmann E, König H (1990) Comparison of the biosynthesis of the methanobacterial pseudomurein and the eubacterial murein. Naturwissenschaften 77:472–475. https://doi.org/10.1007/BF01135923

    Article  CAS  PubMed  Google Scholar 

  • Hartmann E, König H, Kandler O, Hammes W (1990) Isolation of nucleotide activated amino acid and peptide precursors of the pseudomurein of Methanobacterium thermoautotrophicum. FEMS Microbiol Lett 69:271–276

    Article  CAS  Google Scholar 

  • Hartmann E, König H (1991) Nucleotide-activated oligosaccharides are intermediates of the cell wall polysaccharide of Methanosarcina barkeri. Biol Chem. Hoppe-Sleyer 372:971–974

    Article  CAS  Google Scholar 

  • Heimerl T, Flechsler J, Pickl C, Heinz V, Salecker B, Zweck J, Wanner G, Geimer S, Samson RY, Bell SD, Huber H, Wirth R, Wurch L, Podar M, Rachel R (2017) A complex endomembrane system in the archaeon Ignicoccus hospitalis tapped by Nanoarchaeum equitans. Front Microbiol 8:1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Henneberger R, Moissl C, Amann T, Rudolph C, Huber R (2006) New insights into the lifestyle of the cold-loving SM1 euryarchaeon: natural growth as a monospecies biofilm in the subsurface. Appl Environ Microbiol 72:192–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4:45–60

    Article  CAS  PubMed  Google Scholar 

  • Houwink AL (1956) Flagella, gas vacuole sand cell-wall structure in Halobacterium halobium; an electron microscope study. J Gen Microbiol 15:146–150. https://doi.org/10.1099/00221287-15-1-146

    Article  CAS  PubMed  Google Scholar 

  • Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO (2000) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. IJSEM 50(6):2093–2100

    Article  Google Scholar 

  • Huber H, Küper U, Daxer S, Rachel R (2012) The unusual cell biology of the hyperthermophilic crenarchaeon Ignicoccus hospitalis. Antonie Van Leeuwenhoek 102:203–219

    Article  CAS  PubMed  Google Scholar 

  • Hughes RC, Thurman PF (1970) Some structural features of the teichuronic acid of Bacillus licheniformis N.C.T.C. 6346 cell walls. Biochem J 117:441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn U, Gallenberger M, Paper W, Junglas B, Eisenreich W, Stetter KO, Rachel R, Huber H (2008) Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea. J Bacteriol 190:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J (2014) N-linked glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 78(2):304–41. https://doi.org/10.1128/MMBR.00052-13

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kamio Y, Nikaido H (1976) Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. Biochemistry 15:2561–2570

    Article  CAS  PubMed  Google Scholar 

  • Kandler O, Hippe H (1977) Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch Microbiol 113:57–60. https://doi.org/10.1007/BF00428580

    Article  CAS  PubMed  Google Scholar 

  • Kandler O, König H (1978) Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch Microbiol 118:141–152

    Article  CAS  PubMed  Google Scholar 

  • Kandler O, König H (1985) Cell envelopes of archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria. A treatise on structure and function. Archaebacteria, vol VIII. Academic Press, New York, pp 413–457

    Chapter  Google Scholar 

  • Kandler O, König H (1993) Cell envelopes of archaea: structure and chemistry. In: Kates M et al (eds) The biochemistry of archaea (Archaebacteria). Elsevier Science Publ. B.V., pp 223–259

    Google Scholar 

  • Kandler O, König H (1998) Cell wall polymers in archaea (Archaebacteria). Cell Mol Life Sci 54(4):305–308

    Article  CAS  PubMed  Google Scholar 

  • Kärcher U, Schröder H, Haslinger E, Allmeier G, Schreiner R, Wieland F, Haselbeck H, König H (1993) Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. J Biol Chem 268:26821–26826

    PubMed  Google Scholar 

  • Kiener A, König H, Winter J, Leisinger T (1987) Purification and use of Methanobacterium wolfeii pseudomurein endopeptidase for lysis of Methanobacterium thermoautotrophicum. J Bacteriol 169:1010–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingl A (2007) Ultrastrukturelle Aspekte Pyrit-oxidierender Mikroorganismen. Diploma thesis, Institute for Microbiology, University of Regensburg

    Google Scholar 

  • Klingl A (2014) S-layer and cytoplasmic membrane—exceptions from the typical archaeal cell wall with a focus on double membranes. Front Microbiol 5:624

    Article  PubMed  PubMed Central  Google Scholar 

  • Klingl A, Flechsler J, Heimerl T, Rachel R (2013) Archaeal cells. In: eLS. John, Chichester. https://doi.org/10.1002/9780470015902.a0000383.pub2

  • Klingl A, Moissl-Eichinger C, Wanner G, Zweck J, Huber H, Thomm M, Rachel R (2011) Analysis of the surface proteins of Acidithiobacillus ferrooxidans strain SP5/1 and the new, pyrite-oxidizing Acidithiobacillus isolate HV2/2, and their possible involvement in pyrite oxidation. Arch Microbiol 193(12):867–82. https://doi.org/10.1007/s00203-011-0720-y

    Article  CAS  PubMed  Google Scholar 

  • Kocur M, Smid B, Martinec T (1972) The fine structure of extreme halophilic cocci. Microbios 5:101–107

    CAS  PubMed  Google Scholar 

  • König H, Kandler O (1979) The amino acid sequence of the peptide moiety of the pseudomurein from Methanobacterium thermoautotrophicum. Arch Microbiol 121:271–275

    Article  PubMed  Google Scholar 

  • König H, Kandler O, Jensen M, Rietschel ET (1983) The primary structure of the glycan moiety of the pseudomurein from Methanobacterium thermoautotrophicum. Hoppe-Sleyers Z Physiol Chem 364:627–636

    Article  Google Scholar 

  • König H, StetterK O (1986) Studies on archaebacterial S-layers. Syst Appl Microbiol 7:300–309

    Article  Google Scholar 

  • König H, Hartmann E, Kärcher U (1994) Pathways and principles of the biosynthesis of methanobacterial cell wall polymers. Syst Appl Microbiol 16:510–517

    Article  Google Scholar 

  • König H (2001) Archaeal cell walls. eLS. https://doi.org/10.1038/npg.els.0000384

  • König H, Rachel R, Claus H (2007) Proteinaceous surface layers of archaea: ultrastructure and biochemistry. In: Cavicchioli R (ed) Archaea: molecular and cell biology

    Google Scholar 

  • König H, Claus H, Varma A (eds) (2010) Cell envelopes of methanogens. Procaryotic cell wall compounds. Springer, Berlin, pp 231–251

    Google Scholar 

  • Kostyukova AS, Gongadze GM, Polosina YY, Bonch-Osmolovskaya EA, Miroshnichenko ML, Chernyh NA, Obraztsova MV, Svetlichny VA, Messner P, Sleytr UB, L’Haridon S, Jeanthon C, Prieur D (1999) Investigation of structure and antigenic capacities of Thermococcales cell envelopes and reclassification of “Caldococcus litoralis” Z-1301 as Thermococcus litoralis Z-1301. Extremophiles 3:239–245. https://doi.org/10.1007/s007920050122

    Article  CAS  PubMed  Google Scholar 

  • Koval S, Jarrell K (1987) Ultrastructure and biochemistry of the cell wall of Methanococcus voltae. J Bacteriol 169:1298–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreisl P, Kandler O (1986) Chemical structure of the cell wall polymer of Methanosarcina. Syst Appl Microbiol 7:293–299. https://doi.org/10.1016/S0723-2020(86)80022-4

    Article  CAS  Google Scholar 

  • Küper U, Meyer C, Müller V, Rachel R, Huber H (2010) Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic archaeon Ignicoccus hospitalis. PNAS 107:3152–3156

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang K, Schuldes J, Klingl A, Daniel R, Brune A (2015) Comparative genome analysis of “Candidatus Methanoplasma termitum” indicates a new mode of energy metabolism in the seventh order of methanogens. Appl Environ Microbiol 81(4):1338–1352. https://doi.org/10.1128/AEM.03389-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langworthy TA, Smith PF, Mayberry WR (1972) Lipids of Thermoplasma acidophilum. J Bacteriol 112:1193–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lechner J, Sumper M (1987) The primary structure of a prokaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J Biol Chem 262:9724–9729

    CAS  PubMed  Google Scholar 

  • Legat A, Denner EBM, Dornmayr-Pfaffenhuemer M, Pfeiffe P, Knopf B, Claus H, Gruber C, König H, Wanner G, Stan-Lotter H (2013) Properties of Halococcus salifodinae, an isolate from permian rock salt deposits, compared with halococci from surface waters. Life 3:244–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Leps B, Barnickel G, Bradaczek H (1984a) Structural studies on the bacterial cell wall peptidoglycan pseudomurein. I. Conformational energy calculations on the glycan strands in C1 conformation and comparison with murein. J Theor Biol 107:85–114

    Article  CAS  PubMed  Google Scholar 

  • Leps B, Labischinski H, Barnickel G, Bradaczek H, Giesbrecht P (1984b) A new proposal for the primary and secondary structure of the glycan moiety of pseudomurein. Conformational energy calculations on the glycan strand with talosaminuronic acid in 1C conformation and comparison with murein. Eur J Biochem 144:279–286

    Article  CAS  PubMed  Google Scholar 

  • Levene PA, La Forge FB (1913) On chondroitin sulphuric acid. J Biol Chem 15:69–79

    CAS  Google Scholar 

  • Luo Y, Pfister P, Leisinger T, Wasserfallen A (2002) Pseudomurein endoisopeptidase PeiW and PeiP, two moderately related members of a novel family of proteases produced in Methanothermobacter strains. FEMS Microbiol Lett 208:47–51

    Article  CAS  PubMed  Google Scholar 

  • Macalady JL, Vestling MM, Baumler D, Boekelheide N, Kaspar CW, Banfield JF (2004) Tetraether-linked membrane monolayers in Ferroplasma spp.: a key to survival in acid. Extremophiles 8:411–419

    Article  CAS  PubMed  Google Scholar 

  • Matuschek M, Burchhardt G, Sahm K, Bahl H (1994) Pullulanase of Thermoanaerobacterium thermosulphurigenes EM1 (Clostridium thermosulphurogenes): molecular analysis of the gene, composite structure of the enzyme, and a common model for its attachment to the cell surface. J Bacteriol 176:3295–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer F, Küper U, Meyer C, Daxer S, Müller V, Rachel R, Huber H (2012) AMP-forming acetyl coenzyme A synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis. J Bacteriol 194:1572–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mescher MF, Strominger JL (1976) Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. Proc Natl Acad Sci USA 73:2687–2691

    Article  CAS  Google Scholar 

  • Mescher MF, Strominger JL (1976b) Purification and characterisation of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium. J Biol Chem 251:2005–2014

    CAS  PubMed  Google Scholar 

  • Messner P, Sleytr UB (1992) Crystalline bacterial cell-surface layers. Adv Microb Physiol 33:213–274

    Article  CAS  PubMed  Google Scholar 

  • Miroshnichenko ML, Gongadze GM, Rainey FA, Kostyukova AS, Lysenko AM, Chernyh NA, Bonch-Osmolovskaya EA (1998) Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Evol Microbiol 48:23–29. https://doi.org/10.1099/00207713-48-1-23

    Article  Google Scholar 

  • Mitchell P (1961) Approaches to the analysis of specific membrane transport. In: Goodwin TW, Lindberg O (ed) Biological structure and function. Academic Press, New York, pp 581–603

    Google Scholar 

  • Moissl C, Rachel R, Briegel A, Engelhardt H, Huber R (2005) The unique structure of archaeal ‘hami’, highly complex cell appendages with nano-grappling hooks. Mol Microbiol 56:361–370

    Article  CAS  PubMed  Google Scholar 

  • Niemetz R, Kärcher U, Kandler O, Tindall BJ, König H (1997) The cell wall polymer of the extremely halophilic archaeon Natronococcus occultus. Eur J Biochem 249:905–911

    Article  CAS  PubMed  Google Scholar 

  • Näther DJ, Rachel R (2004) The outer membrane of the hyperthermophilic archaeon Ignicoccus: dynamics, ultrastructure and composition. Biochem Soc Trans 32:199–203

    Article  PubMed  Google Scholar 

  • Nußer E, König H (1987) S-layer studies on three species of Methanococcus living at different temperatures. Can J Microbiol 33:256–261. https://doi.org/10.1139/m87-043

    Article  Google Scholar 

  • Paper W, Jahn U, Hohn MJ, Kronner M, Näther DJ, Burghardt T, Rachel R, Stetter KO, Huber H (2007) Ignicoccus hospitalis sp. nov., the host of ‘Nanoarchaeum equitans’. IJSEM 57:803–808

    CAS  PubMed  Google Scholar 

  • Patel GB, Sprott GD, Humphrey RW, Beveridge TJ (1986) Comparative analyses of the sheath structures of Methanothrix concilii GP6 and Methanospirillum hungatei strains GP1 and JF1. Can J Microbiol 32:623–631

    Article  CAS  Google Scholar 

  • Perras AK, Wanner G, Klingl A, Mora M, Auerbach AK, Heinz V, Probst AJ, Huber H, Rachel R, Meck S, Moissl-Eichinger C (2014) Grappling archaea: ultrastructural analyses of an uncultivated, cold-loving archaeon, and its biofilm. Front Microbiol 5:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Perras AK, Daum B, Ziegler C, Takahashi LK, Ahmed M, Wanner G, Klingl A, Leitinger G, Kolb-Lenz D, Gribaldo S, Auerbach A, Mora M, Probst AJ, Bellack A, Moissl-Eichinger C (2015) S-layers at second glance? Altiarchaeal grappling hooks (hami) resemble archaeal s-layer proteins in structure and sequence. Front Microbiol 6:543

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters J, Nitsch M, Kuhlmorgen B, Golbik R, Lupas A, Kellermann J, Engelhardt H, Pfander JP, Müller S, Goldie K, Engel A, Stetter KO, Baumeister W (1995) Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. J Mol Biol 245:385–401

    Article  CAS  PubMed  Google Scholar 

  • Peters J, Baumeister W, Lupas A (1996) Hyperthermostable surface layer protein tetrabrachion from the archaebacterium Staphylothermus marinus: evidence for the presence of a right-handed coiled coil derived from the primary structure. J Mol Biol 257:1031–1041

    Article  CAS  PubMed  Google Scholar 

  • Probst AJ, Weinmaier T, Raymann K, Perras A, Emerson JB, Rattei T, Wanner G, Klingl A, Berg IA, Yoshinaga M, Viehweger B, Hinrichs K-U, Thomas BC, Meck S, Auerbach AK, Heise M, Schintlmeister A, Schmid M, Wagner M, Gribaldo S, Banfield JF, Moissl-Eichinger C (2014) Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat Commun 5:5497

    Article  CAS  PubMed  Google Scholar 

  • Pum D, Sleytr UB (2014) Reassembly of S-layer proteins. Nanotechnology 25:312001. https://doi.org/10.1088/0957-4484/25/31/312001

    Article  CAS  PubMed  Google Scholar 

  • Rachel R, Pum D, Šmarda J, Šmajs D, Komrska J, Krzyzánek V, Rieger G, Stetter KO (1997) II. Fine structure of S-layers. FEMS Microbiol Rev 20:13–23

    Article  CAS  Google Scholar 

  • Rachel R, Wyschkony I, Riehl S, Huber H (2002) The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 1:9–18

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues-Oliveira T, Belmok A, Vasconcellos D, Schuster B, Kyaw CM (2017) Archaeal S-layers: overview and current state of the art. Front Microbiol 8:2597. https://doi.org/10.3389/fmicb.2017.02597

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz N, Kahne D, Silhavy TJ (2006) Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4:57–66

    Article  PubMed  CAS  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schleifer KH, Steber J, Mayer H (1982) Chemical composition and structure of the cell wall of Halococcus morrhuae. Zentralbl Bakteriol Mikrobiol Hyg Ser C3:171–178

    Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sára M (1988) Crystalline bacterial cell surface layers. In: Proceedings of EMBO workshop on crystalline bacterial surface layers. Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  • Sleytr UB, Huber C, Ilk N, Pum D, Schuster B, Egelseer EM (2007) S-layers as a tool kit for nanobiotechnical applications. FEMS Microbiol Lett 267:131–144

    Article  CAS  PubMed  Google Scholar 

  • Smith PF (1984) Lipoglycans from mycoplasmas. Crit Rev Microbiol 11:157–186

    Article  CAS  PubMed  Google Scholar 

  • Sowers KR, Boone JE, Gunsalus RP (1993) Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol 59:3832–3839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Southam G, Beveridge TJ (1991) Immunochemical analysis of the sheath of the archaeobacterium Methanospirillum hungatei strain GP1. J Bacteriol 173:6213–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southam G, Beveridge TJ (1992) Characterization of novel, phenol-soluble polypeptides which confer rigidity to the sheath of Methanospirillum hungatei GP1. J Bacteriol 174:935–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJG (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179. https://doi.org/10.1038/nature14447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprott GD, Colvin JR, McKellar RC (1979) Spheroplasts of Methanospirillum hungatii formed upon treatment with dithiothreitol. Can J Microbiol 25:730–738

    Article  CAS  PubMed  Google Scholar 

  • Sprott GD, McKellar RC (1980) Composition and properties of the cell wall of Methanospirillum hungatei. Can J Microbiol 26:115–120

    Article  CAS  PubMed  Google Scholar 

  • Sprott GD, Beveridge TJ, Patel GB, Ferrante G (1986) Sheath disassembly in Methanospirillum hungatei strain GP1. Can J Microbiol 32:847–854

    Article  CAS  Google Scholar 

  • Steber J, Schleifer KH (1975) Halococcus morrhuae: a sulfated heteropolysaccharide as the structural component of the bacterial cell wall. Arch Microbiol 105:173–177

    Article  CAS  PubMed  Google Scholar 

  • Steber J, Schleifer KH (1979) N-glycyl-glucosamine: a novel constituent in the cell wall of Halococcus morrhuae. Arch Microbiol 123:209–212

    Article  CAS  Google Scholar 

  • Steenbakkers PJM, Geerts WJ, Ayman-Oz NA, Keltjens JT (2006) Identification of pseudomurein cell wall binding domains. Mol Microbiol 62:1618–1630

    Article  CAS  PubMed  Google Scholar 

  • Stieglmeier M, Klingl A, Rittmann S, Alves RE, Melcher M, Leisch N, Schleper C (2014) Nitrososphaera viennensis sp. nov., an aerobic and mesophilic ammonia oxidizing archaeon from soil and member of the novel archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol 64(8):2738–2752. https://doi.org/10.1099/ijs.0.063172-0

    Article  CAS  Google Scholar 

  • Sumper M, Berg E, Mengele R, Strobel L (1990) Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J Bacteriol 172:7111–7118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumper M, Wieland FT (1995) Bacterial glycoproteins. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins. Elsevier, Amsterdam, pp 455–473

    Chapter  Google Scholar 

  • Tindall BJ, Ross HMN, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov.—two genera of halalkaliphilc archaebacteria. Syst Appl Microbiol 5:41–57

    Article  Google Scholar 

  • Veith A, Klingl A, Zolghadr B, Lauber K, Mentele R, Lottspeich F, Rachel R, Alber S-V, Kletzin A (2009) Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression. Mol Microbiol 73:58–72

    Google Scholar 

  • Visweswaran GR, Dijkstra BW, Kok J (2010) Two major archaeal pseudomurein endoisopeptidases: PeiW and PeiP. Archaea 2010:480492. https://doi.org/10.1155/2010/480492

    Article  CAS  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LL, Haug A (1979) Structure of membrane lipids and physico-biochemical properties of the plasma membrane from Thermoplasma acidophilum, adapted to growth at 37 degrees C. Biochem Biophys Acta 573:308–320

    Article  CAS  PubMed  Google Scholar 

  • Wildhaber I, Baumeister W (1987) The cell envelope of Thermoproteus tenax: three-dimensional structure of the surface layer and its role in shape maintenance. EMBO J 6:1475–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579. https://doi.org/10.1073/pnas.87.12.4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurist-Doutsch S, Chaban B, VanDyke DJ, Jarrell KF, Eichler J (2008) Sweet to the extreme: protein glycosylation in Archaea. Mol Microbiol 68(5):1079–84. https://doi.org/10.1111/j.1365-2958.2008.06224.x

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG, Bowen VG (1975) Fine structure of Methanospirillum hungati. J Bacteriol 121:373–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zenke R, von Gronau S, Bolhuis H, Gruska M, Pfeiffer F, Oesterhelt D (2015) Fluorescence microscopy visualization of halomucin, a secreted 927 kDa protein surrounding Haloquadratum walsbyi cells. Front Microbiol 6:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Zolghadr B, Klingl A, Rachel R, Driessen AJM, Albers S-V (2011) The bindosome is a structural component of the Sulfolobus solfataricus cell envelope. Extremophiles 15:235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Michaela Stieglmeier, Prof. Dr. Christa Schleper, Prof. Dr. Reinhard Rachel and Prof. Dr. Tairo Oshima for their scientific input and Marion Debus, Cornelia Niemann and Jennifer Grünert for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Klingl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klingl, A., Pickl, C., Flechsler, J. (2019). Archaeal Cell Walls. In: Kuhn, A. (eds) Bacterial Cell Walls and Membranes . Subcellular Biochemistry, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-030-18768-2_14

Download citation

Publish with us

Policies and ethics