Skip to main content

Inner Membrane Translocases and Insertases

  • Chapter
  • First Online:
Bacterial Cell Walls and Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 92))

Abstract

The inner membrane of Gram-negative bacteria is a ~6 nm thick phospholipid bilayer. It forms a semi-permeable barrier between the cytoplasm and periplasm allowing only regulated export and import of ions, sugar polymers, DNA and proteins. Inner membrane proteins, embedded via hydrophobic transmembrane α-helices, play an essential role in this regulated trafficking: they mediate insertion into the membrane (insertases) or complete crossing of the membrane (translocases) or both. The Gram-negative inner membrane is equipped with a variety of different insertases and translocases. Many of them are specialized, taking care of the export of only a few protein substrates, while others have more general roles. Here, we focus on the three general export/insertion pathways, the secretory (Sec) pathway, YidC and the twin-arginine translocation (TAT) pathway, focusing closely on the Escherichia coli (E. coli) paradigm. We only briefly mention dedicated export pathways found in different Gram-negative bacteria. The Sec system deals with the majority of exported proteins and functions both as a translocase for secretory proteins and an insertase for membrane proteins. The insertase YidC assists the Sec system or operates independently on membrane protein clients. Sec and YidC, in common with most export pathways, require their protein clients to be in soluble non-folded states to fit through the translocation channels and grooves. The TAT pathway is an exception, as it translocates folded proteins, some loaded with prosthetic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APH:

Amphipathic helix

BAM:

Β-barrel assembly machinery

CU:

Chaperone-Usher

E. coli :

Escherichia coli

IRA:

Intramolecular regulator of ATPase

MD:

Mature domain

MTS:

Mature domain targeting signal

NBD:

Nucleotide binding domain

OMVs:

Outer membrane vesicles

PBD:

Preprotein binding domain

PMF:

Proton motive force

prl :

Protein localization

REMPs:

Redox enzyme maturation proteins

RNC:

Ribosome-nascent chain complex

SD:

Scaffold domain

Sec pathway:

Secretory pathway

SP:

Signal peptide

SRP:

Signal recognition particle

TAM:

Translocation and assembly module

TAT:

Twin-arginine translocation

TF:

Trigger factor

TMH:

Transmembrane helix

TXSS:

Type X secretion system

References

  • Akopian D et al (2013) Signal recognition particle: an essential protein-targeting machine. Annu Rev Biochem 82:693–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alami M et al (2007) Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J 26(8):1995–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcock F et al (2016) Assembling the Tat protein translocase. Elife 5

    Google Scholar 

  • Alcock F et al (2017) In vivo experiments do not support the charge zipper model for Tat translocase assembly. Elife 6

    Google Scholar 

  • Alcock F et al (2013) Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system. Proc Natl Acad Sci U S A 110(38):E3650–E3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auclair SM, Bhanu MK, Kendall DA (2012) Signal peptidase I: cleaving the way to mature proteins. Protein Sci 21(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Bageshwar UK et al (2016) High throughput screen for escherichia coli twin Arginine translocation (Tat) inhibitors. PLoS ONE 11(2):e0149659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagherinejad MR et al (2016) Twin arginine translocation system in secretory expression of recombinant human growth hormone. Res Pharm Sci 11(6):461–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Ball G et al (2016) Contribution of the twin Arginine translocation system to the exoproteome of Pseudomonas aeruginosa. Sci Rep 6:27675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berks BC (2015) The twin-arginine protein translocation pathway. Annu Rev Biochem 84:843–864

    Article  CAS  PubMed  Google Scholar 

  • Bhuwan M et al (2016) Interaction of mycobacterium tuberculosis virulence factor RipA with Chaperone MoxR1 is required for transport through the TAT secretion system. MBio 7(2):e02259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieker KL, Phillips GJ, Silhavy TJ (1990) The sec and prl genes of Escherichia coli. J Bioenerg Biomembr 22(3):291–310

    Article  CAS  PubMed  Google Scholar 

  • Branston SD et al (2012) Investigation of the impact of Tat export pathway enhancement on E. coli culture, protein production and early stage recovery. Biotechnol Bioeng 109(4):983–91

    Article  PubMed  CAS  Google Scholar 

  • Chatzi KE et al (2013) Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 449(1):25–37

    Article  CAS  PubMed  Google Scholar 

  • Chatzi KE et al (2017) Preprotein mature domains contain translocase targeting signals that are essential for secretion. J Cell Biol 216(5):1357–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherak SJ, Turner RJ (2017) Assembly pathway of a bacterial complex iron sulfur molybdoenzyme. Biomol Concepts 8(3–4):155–167

    CAS  PubMed  Google Scholar 

  • Cline K (2015) Mechanistic aspects of folded protein transport by the twin arginine translocase (Tat). J Biol Chem 290(27):16530–16538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collinson I (2017) SecA-a new twist in the tale. J Bacteriol 199(2)

    Google Scholar 

  • Crane JM, Randall LL (2017) The Sec system: protein export in Escherichia coli. EcoSal Plus 7(2)

    Google Scholar 

  • Cranford-Smith T, Huber D (2018) The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. FEMS Microbiol Lett 365(11)

    Google Scholar 

  • Dalbey RE, Kuhn A (2014) How YidC inserts and folds proteins across a membrane. Nat Struct Mol Biol 21(5):435–436

    Article  CAS  PubMed  Google Scholar 

  • Dalbey RE, Wang P, Kuhn A (2011) Assembly of bacterial inner membrane proteins. Annu Rev Biochem 80:161–187

    Article  CAS  PubMed  Google Scholar 

  • Dalbey RE et al (2014) The membrane insertase YidC. Biochim Biophys Acta 1843(8):1489–1496

    Article  CAS  PubMed  Google Scholar 

  • De Geyter J et al (2016) Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 1(8):16107

    Article  PubMed  CAS  Google Scholar 

  • Derman AI et al (1993) A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J 12(3):879–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desvaux M (2012) Contribution of holins to protein trafficking: secretion, leakage or lysis? Trends Microbiol 20(6):259–261

    Article  CAS  PubMed  Google Scholar 

  • Economou A, Wickner W (1994) SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78(5):835–843

    Article  CAS  PubMed  Google Scholar 

  • Eimer E et al (2018) Unanticipated functional diversity among the TatA-type components of the Tat protein translocase. Sci Rep 8(1):1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ernst S et al (2011) YidC-driven membrane insertion of single fluorescent Pf3 coat proteins. J Mol Biol 412(2):165–175

    Article  CAS  PubMed  Google Scholar 

  • Facey SJ et al (2007) The mechanosensitive channel protein MscL is targeted by the SRP to the novel YidC membrane insertion pathway of Escherichia coli. J Mol Biol 365(4):995–1004

    Article  CAS  PubMed  Google Scholar 

  • Frobel J, Rose P, Muller M (2011) Early contacts between substrate proteins and TatA translocase component in twin-arginine translocation. J Biol Chem 286(51):43679–43689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gelis I et al (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131(4):756–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh D et al (2017) Evaluating a new high-throughput twin-Arginine translocase assay in bacteria for therapeutic applications. Curr Microbiol 74(11):1332–1336

    Article  CAS  PubMed  Google Scholar 

  • Gouridis G et al (2009) Signal peptides are allosteric activators of the protein translocase. Nature 462(7271):363–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouridis G et al (2013) Quaternary dynamics of the SecA motor drive translocase catalysis. Mol Cell 52(5):655–666

    Article  CAS  PubMed  Google Scholar 

  • Gray AN et al (2011) Unbalanced charge distribution as a determinant for dependence of a subset of Escherichia coli membrane proteins on the membrane insertase YidC. MBio 2(6)

    Google Scholar 

  • Guthrie B, Wickner W (1990) Trigger factor depletion or overproduction causes defective cell division but does not block protein export. J Bacteriol 172(10):5555–5562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habersetzer J et al (2017) Substrate-triggered position switching of TatA and TatB during Tat transport in Escherichia coli. Open Biol 7(8)

    Google Scholar 

  • Hamilton JJ et al (2014) A holin and an endopeptidase are essential for chitinolytic protein secretion in Serratia marcescens. J Cell Biol 207(5):615–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamsanathan S, Musser SM (2018) The Tat protein transport system: intriguing questions and conundrums. FEMS Microbiol Lett 365(12)

    Google Scholar 

  • Hartl FU (2017) Protein misfolding diseases. Annu Rev Biochem 86:21–26

    Article  CAS  PubMed  Google Scholar 

  • Hennon SW, Dalbey RE (2014) Cross-linking-based flexibility and proximity relationships between the TM segments of the Escherichia coli YidC. Biochemistry 53(20):3278–3286

    Article  CAS  PubMed  Google Scholar 

  • Hennon SW et al (2015) YidC/Alb3/Oxa1 Family of Insertases. J Biol Chem 290(24):14866–14874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hizlan D et al (2012) Structure of the SecY complex unlocked by a preprotein mimic. Cell Rep 1(1):21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Palmer T (2017) Signal peptide hydrophobicity modulates interaction with the twin-Arginine translocase. MBio 8(4)

    Google Scholar 

  • Huang Q et al (2017) A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase. Proc Natl Acad Sci USA 114(10):E1958–E1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber D et al (2017) SecA cotranslationally interacts with nascent substrate proteins in vivo. J Bacteriol 199(2)

    Google Scholar 

  • Hung MC, Link W (2011) Protein localization in disease and therapy. J Cell Sci 124(Pt 20):3381–3392

    Article  CAS  PubMed  Google Scholar 

  • Jones AS et al (2016) Proofreading of substrate structure by the Twin-Arginine translocase is highly dependent on substrate conformational flexibility but surprisingly tolerant of surface charge and hydrophobicity changes. Biochim Biophys Acta 1863(12):3116–3124

    Article  CAS  PubMed  Google Scholar 

  • Karamanou S et al (2007) Preprotein-controlled catalysis in the helicase motor of SecA. EMBO J 26(12):2904–2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedrov A et al (2011) A single copy of SecYEG is sufficient for preprotein translocation. EMBO J 30(21):4387–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiefer D, Kuhn A (2018) YidC-mediated membrane insertion. FEMS Microbiol Lett 365(12)

    Google Scholar 

  • Kihara A, Akiyama Y, Ito K (1996) A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY. EMBO J 15(22):6122–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn A (1988) Alterations in the extracellular domain of M13 procoat protein make its membrane insertion dependent on secA and secY. Eur J Biochem 177(2):267–271

    Article  CAS  PubMed  Google Scholar 

  • Kuhn A, Koch HG, Dalbey RE (2017) Targeting and insertion of membrane proteins. EcoSal Plus 7(2)

    Google Scholar 

  • Kuhn A, Kiefer D (2017) Membrane protein insertase YidC in bacteria and archaea. Mol Microbiol 103(4):590–594

    Article  CAS  PubMed  Google Scholar 

  • Kumazaki K et al (2014a) Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509(7501):516–520

    Article  CAS  PubMed  Google Scholar 

  • Kumazaki K et al (2014b) Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci Rep 4:7299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzniatsova L, Winstone TM, Turner RJ (2016) Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones. Biochim Biophys Acta 1858(4):767–775

    Article  CAS  PubMed  Google Scholar 

  • Lasica AM et al (2017) The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front Cell Infect Microbiol 7:215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lausberg F et al (2012) Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli. PLoS ONE 7(6):e39867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiman PG et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 106(11):4154–4159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L et al (2016) Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531(7594):395–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lill R, Dowhan W, Wickner W (1990) The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60(2):271–280

    Article  CAS  PubMed  Google Scholar 

  • Matos CF et al (2012) High-yield export of a native heterologous protein to the periplasm by the tat translocation pathway in Escherichia coli. Biotechnol Bioeng 109(10):2533–2542

    Article  CAS  PubMed  Google Scholar 

  • Morra R et al (2018) Translation stress positively regulates MscL-dependent excretion of cytoplasmic proteins. MBio 9(1)

    Google Scholar 

  • Oh E et al (2011) Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147(6):1295–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orfanoudaki G, Economou A (2014) Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb). Mol Cell Proteomics 13(12):3674–3687

    Article  CAS  Google Scholar 

  • Osborne AR, Rapoport TA (2007) Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129(1):97–110

    Article  CAS  PubMed  Google Scholar 

  • Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10(7):483–496

    Article  CAS  PubMed  Google Scholar 

  • PalmerT, Sargent F, Berks BC (2010) The Tat protein export pathway. EcoSal Plus 4(1)

    Google Scholar 

  • Papanastasiou M et al (2016) Rapid label-free quantitative analysis of the E. coli BL21(DE3) inner membrane proteome. Proteomics 16(1):85–97

    Article  PubMed  CAS  Google Scholar 

  • Papanastasiou M et al (2013) The Escherichia coli peripheral inner membrane proteome. Mol Cell Proteomics 12(3):599–610

    Article  CAS  PubMed  Google Scholar 

  • Petriman NA et al (2018) The interaction network of the YidC insertase with the SecYEG translocon, SRP and the SRP receptor FtsY. Sci Rep 8(1):578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price CE, Driessen AJ (2010) Conserved negative charges in the transmembrane segments of subunit K of the NADH: ubiquinone oxidoreductase determine its dependence on YidC for membrane insertion. J Biol Chem 285(6):3575–3581

    Article  CAS  PubMed  Google Scholar 

  • Price CE et al (2010) Differential effect of YidC depletion on the membrane proteome of Escherichia coli under aerobic and anaerobic growth conditions. Proteomics 10(18):3235–3247

    Article  CAS  PubMed  Google Scholar 

  • Rodrigue A et al (1999) Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J Biol Chem 274(19):13223–13228

    Article  CAS  PubMed  Google Scholar 

  • Rollauer SE et al (2012) Structure of the TatC core of the twin-arginine protein transport system. Nature 492(7428):210–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose P et al (2013) Substrate-dependent assembly of the Tat translocase as observed in live Escherichia coli cells. PLoS ONE 8(8):e69488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sala A, Bordes P, Genevaux P (2014) Multitasking SecB chaperones in bacteria. Front Microbiol 5:666

    Article  PubMed  PubMed Central  Google Scholar 

  • Saraogi I, Shan SO (2014) Co-translational protein targeting to the bacterial membrane. Biochim Biophys Acta 1843(8):1433–1441

    Article  CAS  PubMed  Google Scholar 

  • Saraogi I, Akopian D, Shan SO (2014) Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. J Cell Biol 205(5):693–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardis MF et al (2017) Preprotein conformational dynamics drive bivalent translocase docking and secretion. Structure 25(7):1056–1067 e6

    Article  PubMed  CAS  Google Scholar 

  • Schiebel E et al (1991) Delta mu H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64(5):927–939

    Article  CAS  PubMed  Google Scholar 

  • Shen K et al (2012) Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492(7428):271–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimohata N et al (2007) SecY alterations that impair membrane protein folding and generate a membrane stress. J Cell Biol 176(3):307–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shruthi H et al (2010a) Twin arginine translocase pathway and fast-folding lipoprotein biosynthesis in E. coli: interesting implications and applications. Mol Biosyst 6(6):999–1007

    Article  CAS  PubMed  Google Scholar 

  • Shruthi H, Babu MM, Sankaran K (2010b) TAT-pathway-dependent lipoproteins as a niche-based adaptation in prokaryotes. J Mol Evol 70(4):359–370

    Article  CAS  PubMed  Google Scholar 

  • Sikdar R, Doerrler WT (2010) Inefficient Tat-dependent export of periplasmic amidases in an Escherichia coli strain with mutations in two DedA family genes. J Bacteriol 192(3):807–818

    Article  CAS  PubMed  Google Scholar 

  • Simone D et al (2013) Diversity and evolution of bacterial twin arginine translocase protein, TatC, reveals a protein secretion system that is evolving to fit its environmental niche. PLoS ONE 8(11):e78742

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith MA et al (2005) Modeling the effects of prl mutations on the Escherichia coli SecY complex. J Bacteriol 187(18):6454–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soman R et al (2014) Polarity and charge of the periplasmic loop determine the YidC and sec translocase requirement for the M13 procoat lep protein. J Biol Chem 289(2):1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Steinberg R et al (2018) Co-translational protein targeting in bacteria. FEMS Microbiol Lett 365(11)

    Google Scholar 

  • Stevens CM, Paetzel M (2012) Purification of a Tat leader peptide by co-expression with its chaperone. Protein Expr Purif 84(1):167–172

    Article  CAS  PubMed  Google Scholar 

  • Stolle P, Hou B, Bruser T (2016) The Tat substrate CueO is transported in an incomplete folding state. J Biol Chem 291(26):13520–13528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland GA et al (2018) Probing the quality control mechanism of the Escherichia coli twin-arginine translocase with folding variants of a de novo-designed heme protein. J Biol Chem 293(18):6672–6681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taufik I et al (2013) Monitoring the activity of single translocons. J Mol Biol 425(22):4145–4153

    Article  CAS  PubMed  Google Scholar 

  • Tsirigotaki A et al (2018) Long-lived folding intermediates predominate the targeting-competent secretome. Structure 26(5):695–707 e5

    Article  PubMed  CAS  Google Scholar 

  • Tsirigotaki A et al (2017) Protein export through the bacterial Sec pathway. Nat Rev Microbiol 15(1):21–36

    Article  CAS  PubMed  Google Scholar 

  • Tsukazaki T (2018) Structure-based working model of SecDF, a proton-driven bacterial protein translocation factor. FEMS Microbiol Lett 365(12)

    Google Scholar 

  • Ulfig A, Freudl R (2018) The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding. J Biol Chem 293(19):7281–7299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulfig A et al (2017) The h-region of twin-arginine signal peptides supports productive binding of bacterial Tat precursor proteins to the TatBC receptor complex. J Biol Chem 292(26):10865–10882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Bloois E et al (2008) Detection of cross-links between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins. FEBS Lett 582(10):1419–1424

    Article  PubMed  CAS  Google Scholar 

  • van der Laan M et al (2003) A conserved function of YidC in the biogenesis of respiratory chain complexes. Proc Natl Acad Sci USA 100(10):5801–5806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • van der Ploeg R et al (2011) Salt sensitivity of minimal twin arginine translocases. J Biol Chem 286(51):43759–43770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Heijne G (1990) The signal peptide. J Membr Biol 115(3):195–201

    Article  Google Scholar 

  • Walther TH et al (2013) Folding and self-assembly of the TatA translocation pore based on a charge zipper mechanism. Cell 152(1–2):316–326

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Kuhn A, Dalbey RE (2010) Global change of gene expression and cell physiology in YidC-depleted Escherichia coli. J Bacteriol 192(8):2193–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker N, Bageshwar UK, Musser SM (2012) Kinetics of precursor interactions with the bacterial Tat translocase detected by real-time FRET. J Biol Chem 287(14):11252–11260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickstrom D et al (2011) Characterization of the consequences of YidC depletion on the inner membrane proteome of E. coli using 2D blue native/SDS-PAGE. J Mol Biol 409(2):124–35

    Article  PubMed  CAS  Google Scholar 

  • Winterfeld S et al (2009) Substrate-induced conformational change of the Escherichia coli membrane insertase YidC. Biochemistry 48(28):6684–6691

    Article  CAS  PubMed  Google Scholar 

  • Wojnowska M et al (2018) Precursor-Receptor Interactions in the Twin Arginine Protein Transport Pathway Probed with a New Receptor Complex Preparation. Biochemistry 57(10):1663–1671

    Article  CAS  PubMed  Google Scholar 

  • Xie K et al (2006) Different regions of the nonconserved large periplasmic domain of Escherichia coli YidC are involved in the SecF interaction and membrane insertase activity. Biochemistry 45(44):13401–13408

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2014a) Structural basis for TatA oligomerization: an NMR study of Escherichia coli TatA dimeric structure. PLoS ONE 9(8):e103157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y et al (2014b) Solution structure of the TatB component of the twin-arginine translocation system. Biochim Biophys Acta 1838(7):1881–1888

    Article  CAS  PubMed  Google Scholar 

  • Zhu L et al (2012) Both YidC and SecYEG are required for translocation of the periplasmic loops 1 and 2 of the multispanning membrane protein TatC. J Mol Biol 424(5):354–367

    Article  CAS  PubMed  Google Scholar 

  • Zhu L et al (2013) Charge composition features of model single-span membrane proteins that determine selection of YidC and SecYEG translocase pathways in Escherichia coli. J Biol Chem 288(11):7704–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoufaly S et al (2012) Mapping precursor-binding site on TatC subunit of twin arginine-specific protein translocase by site-specific photo cross-linking. J Biol Chem 287(16):13430–13441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our research is funded through the: Research Foundation Flanders (FWO) [grant #G.0B49.15 (to SK); grant #G0C6814N RiMembR (to AE); FWO/F.R.S.-FNRS “Excellence of Science-EOS” programme grant #30550343 (to AE)], EU (FP7 KBBE.2013.3.6-02: Synthetic Biology towards applications; #613877 StrepSynth; to AE), RUN (#RUN/16/001 KU Leuven; to AE) and C1 (ZKD4582—C16/18/008 KU Leuven; to SK and AE). JDG is an FWO doctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastassios Economou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Geyter, J., Smets, D., Karamanou, S., Economou, A. (2019). Inner Membrane Translocases and Insertases. In: Kuhn, A. (eds) Bacterial Cell Walls and Membranes . Subcellular Biochemistry, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-030-18768-2_11

Download citation

Publish with us

Policies and ethics