Skip to main content

Surrogate-Assisted Evolutionary Optimization of Large Problems

  • Chapter
  • First Online:
High-Performance Simulation-Based Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 833))

Abstract

This chapter presents some recent advances in surrogate-assisted evolutionary optimization of large problems. By large problems, we mean either the number of decision variables is large, or the number of objectives is large, or both. These problems pose challenges to evolutionary algorithms themselves, constructing surrogates and surrogate management. To address these challenges, we proposed two algorithms, one called kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) for many-objective optimization, and the other called cooperative swarm optimization algorithm (SA-COSO) for high-dimensional single-objective optimization. Empirical studies demonstrate that K-RVEA works well for many-objective problems having up to ten objectives, while SA-COSA outperforms the state-of-the-art algorithms on 200-dimensional single-objective test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhtar, T., Shoemaker, C.: Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection. J. Glob. Optim. 64, 17–32 (2015)

    Article  MathSciNet  Google Scholar 

  2. Allmendinger, R., Emmerich, M.T.M., Hakanen, J., Jin, Y., Rigoni, E.: Surrogate-assisted multicriteria optimization: Complexities, prospective solutions, and business case. J. Multi-Criteria Decis. Anal. 14, 5–25 (2017)

    Article  Google Scholar 

  3. Arias-Montano, A., Coello, C., Mezura-Montes, E.: Multi-objective airfoil shape optimization using a multiple-surrogate approach. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

    Google Scholar 

  4. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput 19(1), 45–76 (2011)

    Article  Google Scholar 

  5. Branke, J., Schmidt, C.: Faster convergence by means of fitness estimation. Soft Comput. 9(1), 13–20 (2005)

    Article  Google Scholar 

  6. Cheng, R., Jin, Y.: A social learning particle swarm optimization algorithm for scalable optimization. Inf. Sci. 291, 43–60 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20, 773–791 (2016)

    Article  Google Scholar 

  8. Chugh, T., Chakraborti, N., Sindhya, K., Jin, Y.: A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem. Mater. Manuf. Process. 32(10), 1172–1178 (2017)

    Article  Google Scholar 

  9. Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K.: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 129–142 (2018)

    Article  Google Scholar 

  10. Chugh, T., Sindhya, K., Hakanen, J., Miettinen, K.: Handling computationally expensive multiobjective optimization problems with evolutionary algorithms - A survey. Reports of the Department of Mathematical Information Technology, Series B, Scientific Computing no. B 4/2015, University of Jyvaskyla (2015)

    Google Scholar 

  11. Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation (CEC), vol. 3, p. 1957 (1999)

    Google Scholar 

  12. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A., et al.: Evolutionary algorithms for solving multi-objective problems, vol. 5. Springer, Berlin (2007)

    Google Scholar 

  13. Dai, C., Wang, Y., Hu, L.: An improved \(\alpha \)-dominance strategy for many-objective optimization problems. Soft Comput. 20(3), 1105–1111 (2016)

    Article  Google Scholar 

  14. Dasgupta, D., Michalewicz, Z.: Evolutionary algorithms in engineering applications. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  15. Deb, K.: Multi-objective optimization using evolutionary algorithms, vol. 16. Wiley, New York (2001)

    Google Scholar 

  16. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

    Article  Google Scholar 

  17. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  18. Emmerich, M.T., Giannakoglou, K.C., Naujoks, B.: Single-and multiobjective evolutionary optimization assisted by gaussian random field metamodels. IEEE Trans. Evol. Comput. 10(4), 421–439 (2006)

    Article  Google Scholar 

  19. Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in control systems engineering: A survey. Control. Eng. Pract. 10(11), 1223–1241 (2002)

    Article  Google Scholar 

  20. Forrester, A., Keane, A.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009)

    Article  Google Scholar 

  21. Goel, T., Haftka, R.T., Shyy, W., Queipo, N.V.: Ensemble of surrogates. Struct. Multidiscip. Optim. 33(3), 199–216 (2007)

    Article  Google Scholar 

  22. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9, 3–12 (2005)

    Article  Google Scholar 

  23. Jin, Y.: Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

    Article  Google Scholar 

  24. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002)

    Article  Google Scholar 

  25. Jin, Y., Sendhoff, B.: Reducing fitness evaluations using clustering techniques and neural network ensembles. In: Genetic and Evolutionary Computation Conference. Lecture Notes in Computer Science 3102, pp. 688–699. Springer, Berlin (2004)

    Chapter  Google Scholar 

  26. Köppen, M., Vicente-Garcia, R., Nickolay, B.: Fuzzy-pareto-dominance and its application in evolutionary multi-objective optimization. In: Evolutionary Multi-criterion Optimization, pp. 399–412. Springer, Berlin (2005)

    MATH  Google Scholar 

  27. Kukkonen, S., Lampinen, J.: Ranking-dominance and many-objective optimization. In: IEEE Congress on Evolutionary Computation. CEC 2007, pp. 3983–3990. IEEE (2007)

    Google Scholar 

  28. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: A survey. ACM Comput. Surv. (CSUR) 48(1), 13 (2015)

    Article  Google Scholar 

  29. Lim, D., Jin, Y., Ong, Y.S., Sendhoff, B.: Generalizing surrogate-assisted evolutionary computation. IEEE Trans. Evol. Comput. 14(3), 329–355 (2010)

    Article  Google Scholar 

  30. Liu, B., Zhang, Q., Gielen, G.: A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems. IEEE Trans. Evol. Comput. 18(2), 180–192 (2014)

    Article  Google Scholar 

  31. Mckay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 55–61 (2000)

    Article  Google Scholar 

  32. Mitra, K., Majumder, S.: Successive approximate model based multi-objective optimization for an industrial straight grate iron ore induration process using evolutionary algorithm. Chem. Eng. Sci. 66, 3471–3481 (2011)

    Article  Google Scholar 

  33. Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393 (2014)

    Article  Google Scholar 

  34. Parr, J., Keane, A., Forrester, A.I., Holden, C.: Infill sampling criteria for surrogate-based optimization with constraint handling. Eng. Optim. 44(10), 1147–1166 (2012)

    Article  Google Scholar 

  35. Pilát, M., Neruda, R.: ASM-MOMA: Multiobjective memetic algorithm with aggregate surrogate model. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1202–1208. IEEE (2011)

    Google Scholar 

  36. Pilát, M., Neruda, R.: Hypervolume-based local search in multi-objective evolutionary optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 637–644. ACM (2014)

    Google Scholar 

  37. Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) Proceedings of the Parallel Problem Solving from Nature-PPSN X, pp. 784–794. Springer, Berlin (2008)

    Google Scholar 

  38. Rohler, A., Chen, S.: Multi-swarm hybrid for multi-modal optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2012)

    Google Scholar 

  39. Sato, H., Aguirre, H.E., Tanaka, K.: Controlling dominance area of solutions and its impact on the performance of moeas. In: International Conference on Evolutionary Multi-criterion Optimization, pp. 5–20. Springer, Berlin (2007)

    Google Scholar 

  40. Shimoyama, K., Jeong, S., Obayashi, S.: Kriging-surrogate-based optimization considering expected hypervolume improvement in non-constrained many-objective test problems. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 658–665. IEEE (2013)

    Google Scholar 

  41. Singh, P., Couckuyt, I., Ferranti, F., Dhaene, T.: A constrained multi-objective surrogate-based optimization algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 3080–3087. IEEE (2014)

    Google Scholar 

  42. Sun, C., Ding, J., Zeng, J., Jin, Y.: A fitness approximation assisted competitive swarm optimizer for large scale expensive optimization problems. Memetic Comput. 10(2), 123–134 (2018)

    Article  Google Scholar 

  43. Sun, C., Jin, Y., Cheng, R., Ding, J., Zeng, J.: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Trans. Evol. Comput. (2017)

    Google Scholar 

  44. Sun, C., Zeng, J., Pan, J., Xue, S., Jin, Y.: A new fitness estimation strategy for particle swarm optimization. Inf. Sci. 221, 355–370 (2013)

    Article  MathSciNet  Google Scholar 

  45. Wang, D.J., Liu, F., Wang, Y.Z., Jin, Y.: A knowledge-based evolutionary proactive scheduling approach in the presence of machine breakdown and deterioration effect. Knowl.-Based Syst. 90, 70–80 (2015)

    Article  Google Scholar 

  46. Wang, H., Jiao, L., Yao, X.: \({\rm Two}\_{\rm Arch2}\): An improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(4), 524–541 (2015)

    Google Scholar 

  47. Wang, H., Jin, Y., Doherty, J.: Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems. IEEE Trans. Cybern. 47(9), 2664–2677 (2017)

    Article  Google Scholar 

  48. Wang, H., Jin, Y., Jansen, J.: Data-driven surrogate-assisted multi-objective evolutionary optimization of a trauma system. IEEE Trans. Evol. Comput. 20(6), 939–952 (2016)

    Article  Google Scholar 

  49. Wang, H., Olhofer, M., Jin, Y.: Mini-review on preference modeling and articulation in multi-objective optimization: Current status and challenges. Complex Intell. Syst. 3(4), 233–245 (2017)

    Article  Google Scholar 

  50. Wang, H., Yao, X.: Corner sort for pareto-based many-objective optimization. IEEE Trans. Cybern. 44(1), 92–102 (2014)

    Article  Google Scholar 

  51. Wiegand, R.P.: An analysis of cooperative coevolutionary algorithms. Ph.D. thesis, George Mason University Virginia (2003)

    Google Scholar 

  52. Zhang, J., Zhou, A., Tang, K., Zhang, G.: Preselection via classification: A case study on evolutionary multiobjective optimization (2017). arXiv:1708.01146

  53. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  54. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14, 456–474 (2010)

    Article  Google Scholar 

  55. Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)

    Article  Google Scholar 

  56. Zhou, Z., Ong, Y.S., Nair, P.B., Keane, A.J., Lum, K.Y.: Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(1), 66–76 (2007)

    Article  Google Scholar 

  57. Zhou, Z., Ong, Y.S., Nguyen, M.H., Lim, D.: A study on polynomial regression and gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm. In: The 2005 IEEE Congress on Evolutionary Computation, 2005, vol. 3, pp. 2832–2839. IEEE (2005)

    Google Scholar 

  58. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: International Conference on Parallel Problem Solving from Nature, pp. 832–842. Springer, Berlin (2004)

    Google Scholar 

  59. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. In: Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)

    Google Scholar 

Download references

Acknowledgements

The research of Tinkle Chugh was supported by the FiDiPro project DeCoMo funded by Tekes: Finnish Funding Agency for Innovation and Natural Environment Research Council [grant number NE/P017436/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaochu Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chugh, T., Sun, C., Wang, H., Jin, Y. (2020). Surrogate-Assisted Evolutionary Optimization of Large Problems. In: Bartz-Beielstein, T., Filipič, B., Korošec, P., Talbi, EG. (eds) High-Performance Simulation-Based Optimization. Studies in Computational Intelligence, vol 833. Springer, Cham. https://doi.org/10.1007/978-3-030-18764-4_8

Download citation

Publish with us

Policies and ethics