Skip to main content

3D Printed Hand Exoskeleton - Own Concept

  • Conference paper
  • First Online:
Advances in Manufacturing II (MANUFACTURING 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

Numerous hand exoskeletons have been proposed in the literature with the aim of assisting or rehabilitating results of neurodegenerative changes due to ageing, stroke, traumatic brain disorder, spinal cord injury, or other causes of hand disorders. Key issue becomes: how to investigate, improve, and observe the effect of rehabilitation therapy. Thus many studies have been conducted on evaluating the motor function quantitatively by developing various types of robotic systems. Even though the robotic systems have been developed, this task still constitutes challenge, thus functional evaluation of the hand has been rarely investigated, because it is difficult to install a number of actuators or sensors to the hand due to limited space around the fingers. Our article aims at presentation of the own concept of 3D printed hand exoskeleton, associated occupations and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mikołajewska, E., Mikołajewski, D.: Exoskeletons in neurological diseases-current and potential future applications. Adv. Clin. Exp. Med. 20(2), 227–233 (2011)

    Google Scholar 

  2. Mikołajczyk, T., Kłodowski, A., Mikołajewska, E., Walkowiak, P., Berjano, P., Villafañe, J.H., Aggogeri, F., Borboni, A., Fausti, D., Petrogalli, G.: Design and control of system for elbow rehabilitation: preliminary findings. Adv. Clin. Exp. Med. (2018). https://doi.org/10.17219/acem/74556

    Article  Google Scholar 

  3. Radenkovic, D., Solouk, A., Seifalian, A.: Personalized development of human organs using 3D printing technology. Med. Hypotheses 87, 30–33 (2016)

    Article  Google Scholar 

  4. Visser, J., Melchels, F.P., Dhert, W.J., Malda, J.: Tissue printing; the potential application of 3D printing in medicine. Ned. Tijdschr. Geneeskd. 157(52), A7043 (2013)

    Google Scholar 

  5. Naftulin, J.S., Kimchi, E.Y., Cash, S.S.: Streamlined, inexpensive 3D printing of the brain and skull. PLoS One 10(8), e0136198 (2015)

    Article  Google Scholar 

  6. Gür, Y.: Additive manufacturing of anatomical models from computed tomography scan data. Mol. Cell Biomech. 11(4), 249–258 (2014)

    Google Scholar 

  7. Mikołajewska, E., Macko, M., Mikołajewski, D., Ziarnecki, Ł., Stańczak, S., Kawalec, P.: Medical and military applications of 3D printing. Zeszyty Naukowe Wyższej Szkoły Oficerska Wojsk Lądowych im. generała Tadeusza Kościuszki 179(1), 128–141 (2016)

    Google Scholar 

  8. Macko, M., Mikołajewska, E., Szczepański, Z., Augustyńska, B., Mikołajewski, D.: Repository of images for reverse engineering and medical simulation purposes. Med. Biol. Sci. 30(3), 23–29 (2016)

    Article  Google Scholar 

  9. Macko, M., Szczepański, Z., Mikołajewski, D., Mikołajewska, E., Nowak, J., Listopadzki, S.: The method of artificial organs fabrication based on reverse engineering in medicine. In: III International Scientific Conference: Morpho-Biomechanical and Psycho-Physical Aspects of Youth Lifestyle in V4 Countries, vol. 45. Institute of Physical Education, Kazimierz Wielki University in Bydgoszcz (2016)

    Google Scholar 

  10. Mikołajewska, E., Macko, M., Ziarnecki, Ł., Stańczak, S., Kawalec, P., Mikołajewski, D.: 3D printing technologies in rehabilitation engineering. J. Health Sci. 4(12), 78–83 (2014)

    Google Scholar 

  11. He, Y., Xue, G.H., Fu, J.Z.: Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Sci Report, vol. 4, p. 6973 (2014)

    Google Scholar 

  12. Choonara, Y.E., du Toit, L.C., Kumar, P., Kondiah, P.P., Pillay, V.: 3D-printing and the effect on medical costs: a new era? Expert Rev. Pharmacoecon. Outcomes Res. 16(1), 23–32 (2016)

    Article  Google Scholar 

  13. Gu, Q., Hao, J., Lu, Y., Wang, L., Wallace, G.G., Zhou, Q.: Three-dimensional bio-printing. Sci. China Life Sci. 58(5), 411–419 (2015)

    Article  Google Scholar 

  14. Schubert, C., van Langeveld, M.C., Donoso, L.A.: Innovations in 3D printing: a 3D overview from optics to organs. Br. J. Ophthalmol. 98(2), 159–161 (2014)

    Article  Google Scholar 

  15. Hung, K.C., Tseng, C.S., Hsu, S.H.: Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications. Adv. Healthc. Mater. 3(10), 1578–1587 (2014)

    Article  Google Scholar 

  16. Burns, M.K., Van Orden, K., Patel, V., Vinjamuri, R.: Towards a wearable hand exoskeleton with embedded synergies. In: Conference on Proceedings of the IEEE Engineering in Medicine and Biology Society, pp. 213–216 (2017)

    Google Scholar 

  17. Kim, S., Lee, J., Park, W., Bae, J.: Quantitative evaluation of hand functions using a wearable hand exoskeleton system. In: IEEE International Conference on Rehabilitation Robotics, pp. 1488–1493 (2017)

    Google Scholar 

  18. Jo, I., Lee, J., Park, Y., Bae, J.: Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers. In: IEEE International Conference on Rehabilitation Robotics, pp. 1615–1620 (2017)

    Google Scholar 

  19. Chowdhury, A., Meena, Y.K., Raza, H., Bhushan, B., Uttam, A.K., Pandey, N., Hashmi, A.A., Bajpai, A., Dutta, A., Prasad, G.: Active physical practice followed by mental practice using BCI-driven hand exoskeleton: a pilot trial for clinical effectiveness and usability. IEEE J. Biomed. Health Inform. 22(6), 1786–1795 (2018)

    Article  Google Scholar 

  20. Wierzgała, P., Zapała, D., Wójcik, G.M., Masiak, J.: Most popular signal processing methods in motor-imagery BCI: a review and meta-analysis. Front. Neuroinform. 12, 78 (2018)

    Article  Google Scholar 

  21. Wójcik, G.M.: Self-organising criticality in the simulated models of the rat cortical microcircuits. Neurocomputing 79, 61–67 (2012)

    Article  Google Scholar 

  22. Frolov, A.A., Mokienko, O., Lyukmanov, R., Biryukova, E., Kotov, S., Turbina, L., Nadareyshvily, G., Bushkova, Y.: Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton, a randomized controlled multicenter trial. Front. Neurosci. 11, 400 (2017)

    Article  Google Scholar 

  23. Rojek, I.: Neural networks as performance improvement models in intelligent CAPP systems. Control Cybern. 39(1), 55–68 (2010)

    Google Scholar 

  24. Rojek, I.: Technological process planning by the use of neural networks. Artif. Intell. Eng. Des. Anal. Manuf. 31(1), 1–15 (2017)

    Article  Google Scholar 

  25. Rojek, I.: Neural networks as prediction models for water intake in water supply system. In: Lecture Notes in Artificial Intelligence, vol. 5097, pp. 1109–1119. Springer (2008)

    Google Scholar 

  26. Rojek, I.: Hybrid neural networks as prediction models. In: Lecture Notes in Artificial Intelligence, part II, vol. 6114, pp. 88–95. Springer (2010)

    Google Scholar 

  27. Dostatni, E.: Recycling-oriented eco-design methodology based on decentralised artificial intelligence. Manag. Prod. Eng. Rev. 9(3), 79–89 (2018)

    Google Scholar 

  28. Dostatni, E., Diakun, J., Grajewski, D., Wichniarek, R., Karwasz, A.: Multi-agent system to support decision-making process in design for recycling. Soft Comput. 20(11), 4347–4361 (2016)

    Article  Google Scholar 

  29. Macko, M., Flizikowski, J., Szczepański, Z., Tyszczuk, K., Śmigielski, G., Mroziński, A., Czerniak, J., Tomporowski, A.: CAD/CAE applications in Mill’s design and investigation. In: Computer Aided Engineering. Lecture Notes in Mechanical Engineering, pp. 343–351. Springer (2017)

    Google Scholar 

  30. Czerniak, J., Macko, M., Ewald, D.: The CutMAG as a new hybrid method for multi-edge grinder design optimisation. In: Advances in Intelligent Systems and Computing, vol. 401, pp. 327–337. Springer (2016)

    Google Scholar 

  31. Czerniak, J., Ewald, D., Macko, M., Śmigelski, G., Tyszczuk, K.: Approach to the monitoring of energy consumption in eco-grinder based on ABC optimization. In: Communications in Computer and Information Science, vol. 521, pp. 516–529 (2015)

    Chapter  Google Scholar 

  32. Górski, F., Wichniarek, R., Zawadzki, P., Hamrol, A.: Computation of mechanical properties of parts manufactured by fused deposition modeling using finite element method. In: Advances in Intelligent Systems and Computing, vol. 368, pp. 403–413. Springer (2015)

    Google Scholar 

  33. Górski, F., Wichniarek, R., Kuczko, W., Zawadzki, P., Buń, P.: Strength of ABS parts produced by fused deposition modeling technology - a critical orientation problem. Adv. Sci. Technol. Res. J. 9, 12–19 (2015). https://doi.org/10.12913/22998624/2359

    Article  Google Scholar 

  34. Górski, F., Kuczko, W., Wichniarek, R., Hamrol, A.: Mechanical properties of composite parts manufactured in FDM technology. Rapid Prototyp. J. (2018). https://doi.org/10.1108/RPJ-11-2016-0197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Rojek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kopowski, J., Rojek, I., Mikołajewski, D., Macko, M. (2019). 3D Printed Hand Exoskeleton - Own Concept. In: Trojanowska, J., Ciszak, O., Machado, J., Pavlenko, I. (eds) Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-18715-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18715-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18714-9

  • Online ISBN: 978-3-030-18715-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics