Skip to main content

Classification and Radiological Assessment of CVJ Trauma

  • Chapter
  • First Online:
Surgery of the Cranio-Vertebral Junction
  • 509 Accesses

Abstract

Several classification systems are currently in use for craniovertebral junction (CVJ) trauma which combine clinical and radiological data to obtain a treatment algorithm. Recently, attention has been paid to the importance of ligaments and not just to bone structure, thus increasing the complexity of classifications systems and the highlighting the need for magnetic resonance (MR) imaging.

Morbidity and mortality from CVJ trauma are dropping due to improved field and transfer emergency care, to improved recognition of CVJ traumatic lesions, and to development of improved surgical procedures. Despite this, such injuries can be easily overlooked in an acute care polytrauma setting. The complex regional anatomy and overlying structures can make screening radiographic images difficult to interpret. Delayed recognition or inappropriate treatment can result in significant morbidity and even mortality. The goals of treatment are to protect the neural structures, reduce and stabilize the injured segment, and provide long-term stability.

This chapter will focus on the classifications and complementary role of different radiologic modalities in the diagnosis of patients with traumatic CVJ injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mead LB 2nd, Millhouse PW, Krystal J, Vaccaro AR. C1 fractures: a review of diagnoses, management options, and outcomes. Curr Rev Musculoskelet Med. 2016;9(3):255–62.

    Article  Google Scholar 

  2. Roy AK, Miller BA, Holland CM, Fountain AJ Jr, Pradilla G, Ahmad FU. Magnetic resonance imaging of traumatic injury to the craniovertebral junction: a case-based review. Neurosurg Focus. 2015;38(4):E3.

    Article  Google Scholar 

  3. Zhang Y, Cheng K, Dong J, Li Q, Tremp M, Zhu L. Incidence and features of vertebral fractures after scalp avulsion injuries. J Craniofac Surg. 2015;26(7):2217–20.

    Article  Google Scholar 

  4. Nidecker AE, Shen PY. Magnetic resonance imaging of the craniovertebral junction ligaments: normal anatomy and traumatic injury. J Neurol Surg B Skull Base. 2016;77(5):388–95.

    Article  Google Scholar 

  5. Xiong C, Daubs MD, Scott TP, Phan KH, Suzuki A, Ruangchainikom M, et al. Dynamic evaluation of the cervical spine and the spinal cord of symptomatic patients using a kinetic magnetic resonance imaging technique. Clin Spine Surg. 2017;30(8):E1149–55.

    Article  Google Scholar 

  6. Adams VI. Neck injuries: III. Ligamentous injuries of the craniocervical articulation without occipito-atlantal or atlanto-axial facet dislocation. A pathologic study of 21 traffic fatalities. J Forensic Sci. 1993;38(5):1097–104.

    Article  CAS  Google Scholar 

  7. Riascos R, Bonfante E, Cotes C, Guirguis M, Hakimelahi R, West C. Imaging of atlanto-occipital and atlantoaxial traumatic injuries: what the radiologist needs to know. Radiographics. 2015;35(7):2121–34.

    Article  Google Scholar 

  8. Yamada H, Yamanaka T. [Atlanto-axial and occipito-atlantal dislocation in Down’s syndrome]. No To Hattatsu. 1987;19(4):309–14.

    Google Scholar 

  9. Diaz FL, Tweardy L, Shellock FG. Cervical external immobilization devices: evaluation of magnetic resonance imaging issues at 3.0 Tesla. Spine (Phila Pa 1976). 2010;35(4):411–5.

    Article  Google Scholar 

  10. Aulino JM, Tutt LK, Kaye JJ, Smith PW, Morris JA Jr. Occipital condyle fractures: clinical presentation and imaging findings in 76 patients. Emerg Radiol. 2005;11(6):342–7.

    Article  Google Scholar 

  11. Ueda S, Sasaki N, Fukuda M, Hoshimaru M. Surgical treatment for occipital condyle fracture, C1 dislocation, and cerebellar contusion with hemorrhage after blunt head trauma. Case Rep Orthop. 2016;2016:8634831.

    PubMed  PubMed Central  Google Scholar 

  12. Anderson PA, Montesano PX. Morphology and treatment of occipital condyle fractures. Spine (Phila Pa 1976). 1988;13(7):731–6.

    Article  CAS  Google Scholar 

  13. Maung AA, Johnson DC, Barre K, Peponis T, Mesar T, Velmahos GC, et al. Cervical spine MRI in patients with negative CT: a prospective, multicenter study of the Research Consortium of New England Centers for Trauma (ReCONECT). J Trauma Acute Care Surg. 2017;82(2):263–9.

    Article  Google Scholar 

  14. Sonntag VK, Hadley MN, Dickman CA, Browner CM. Atlas fractures: treatment and long-term results. Acta Neurochir Suppl (Wien). 1988;43:63–8.

    CAS  Google Scholar 

  15. Joaquim AF, Ghizoni E, Tedeschi H, Lawrence B, Brodke DS, Vaccaro AR, et al. Upper cervical injuries—a rational approach to guide surgical management. J Spinal Cord Med. 2014;37(2):139–51.

    Article  Google Scholar 

  16. Findlay JM. Injuries involving the transverse atlantal ligament: classification and treatment guidelines based upon experience with 39 injuries. Neurosurgery. 1996;39(1):210.

    Article  CAS  Google Scholar 

  17. Dickman CA, Greene KA, Sonntag VK. Injuries involving the transverse atlantal ligament: classification and treatment guidelines based upon experience with 39 injuries. Neurosurgery. 1996;38(1):44–50.

    Article  CAS  Google Scholar 

  18. Ivancic PC. Plough fracture of the anterior arch of the atlas: a biomechanical investigation. Eur Spine J. 2014;23(11):2314–20.

    Article  Google Scholar 

  19. Robinson AL, Moller A, Robinson Y, Olerud C. C2 Fracture subtypes, incidence, and treatment allocation change with age: a retrospective cohort study of 233 consecutive cases. Biomed Res Int. 2017;2017:8321680.

    PubMed  PubMed Central  Google Scholar 

  20. Falavigna A, Righesso O, da Silva PG, Siri CR, Daniel JW, Esteves Veiga JC, et al. Management of type II odontoid fractures: experience from Latin American Spine Centers. World Neurosurg. 2017;98:673–81.

    Article  Google Scholar 

  21. Shammassian B, Wright CH, Wright J, Onwuzulike, Tomei KL. Successful delayed non-operative management of C2 neurosynchondrosis fractures in a pediatric patient: a case report and review of management strategies and considerations for treatment. Childs Nerv Syst. 2016;32(1):163–8.

    Article  Google Scholar 

  22. Korres DS, Chytas DG, Markatos KN, Efstathopoulos NE, Nikolaou VS. The “challenging” fractures of the odontoid process: a review of the classification schemes. Eur J Orthop Surg Traumatol. 2017;27(4):469–75.

    Article  Google Scholar 

  23. Anderson LD, D’Alonzo RT. Fractures of the odontoid process of the axis. J Bone Joint Surg Am. 1974;56(8):1663–74.

    Article  CAS  Google Scholar 

  24. Sayama CM, Fassett DR, Apfelbaum RI. The utility of MRI in the evaluation of odontoid fractures. J Spinal Disord Tech. 2008;21(7):524–6.

    Article  Google Scholar 

  25. Hakalo J, Wronski J. Operative treatment of hangman’s fractures of C2. Posterior direct pars screw repair or anterior plate-cage stabilization? Neurol Neurochir Pol. 2008;42(1):28–36.

    PubMed  Google Scholar 

  26. Koller H, Acosta F, Forstner R, Zenner J, Resch H, Tauber M, et al. C2-fractures: part II. A morphometrical analysis of computerized atlantoaxial motion, anatomical alignment and related clinical outcomes. Eur Spine J. 2009;18(8):1135–53.

    Article  Google Scholar 

  27. Como JJ, Diaz JJ, Dunham CM, Chiu WC, Duane TM, Capella JM, et al. Practice management guidelines for identification of cervical spine injuries following trauma: update from the eastern association for the surgery of trauma practice management guidelines committee. J Trauma. 2009;67(3):651–9.

    Article  Google Scholar 

  28. Martinez-Del-Campo E, Kalb S, Soriano-Baron H, Turner JD, Neal MT, Uschold T, et al. Computed tomography parameters for atlantooccipital dislocation in adult patients: the occipital condyle-C1 interval. J Neurosurg Spine. 2016;24(4):535–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barges-Coll, J., Duff, J.M. (2020). Classification and Radiological Assessment of CVJ Trauma. In: Tessitore, E., Dehdashti, A., Schonauer, C., Thomé, C. (eds) Surgery of the Cranio-Vertebral Junction. Springer, Cham. https://doi.org/10.1007/978-3-030-18700-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18700-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18699-9

  • Online ISBN: 978-3-030-18700-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics