Skip to main content

A Parallel Adaptive Swarm Search Framework for Solving Black-Box Optimization Problems

  • Conference paper
  • First Online:
Architecture of Computing Systems – ARCS 2019 (ARCS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11479))

Included in the following conference series:

Abstract

This paper presents a framework to support parallel swarm search algorithms for solving black-box optimization problems. Looking at swarm based optimization, it is important to find a well fitted set of parameters to increase the convergence rate for finding the optimum. This fitting is problem dependent and time-consuming. The presented framework automates this fitting. After finding parameters for the best algorithm, a good mapping of algorithmic properties onto a parallel hardware is crucial for the overall efficiency of a parallel implementation. Swarm based algorithms are population based, the best number of individuals per swarm and, in the parallel case, the best number of swarms in terms of efficiency and/or performance has to be found. Data dependencies result in communication patterns that have to be cheaper in terms of execution times than the computing in between communications. Taking all this into account, the presented framework enables the programmer to implement efficient and adaptive parallel swarm search algorithms. The approach is evaluated through benchmarks and real world problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.openmp.org/. Accessed 2 Dec 2018.

  2. 2.

    The ratio of the sequential execution time to the parallel execution time.

  3. 3.

    https://xlinux.nist.gov/dads/HTML/binarySearch.html. Accessed 2 Dec 2018.

  4. 4.

    https://www.mcs.anl.gov/research/projects/mpi/. Accessed 2 Dec 2018.

  5. 5.

    https://github.com/rshuka/PASS. Accessed 2 Dec 2018.

References

  1. Abadlia, H., Smairi, N., Ghedira, K.: Particle swarm optimization based on dynamic island model. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 709–716 (2017)

    Google Scholar 

  2. Addis, B., et al.: A global optimization method for the design of space trajectories. Comput. Optim. Appl. 48(3), 635–652 (2011)

    Article  MathSciNet  Google Scholar 

  3. European Space Agency and Advanced Concepts Team: Global Trajectory Optimization Problems Database, 19 November 2018. http://www.esa.int/gsp/ACT/projects/gtop/gtop.html

  4. European Space Agency and Advanced Concepts Team: Messenger (Full Version), 19 November 2018. http://www.esa.int/gsp/ACT/projects/gtop/messenger_full.html

  5. Ahmed, H.: An Efficient Fitness-Based Stagnation Detection Method for Particle Swarm Optimization (2014)

    Google Scholar 

  6. Alam, M., Das, B., Pant, V.: A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination. Electr. Power Syst. Res. 128, 39–52 (2015)

    Article  Google Scholar 

  7. Allugundu, I., et al.: Acceleration of distance-to-default with hardware-software co-design, August 2012, pp. 338–344 (2012)

    Google Scholar 

  8. Altinoz, O.T., Yılmaz, A.E.: Comparison of Parallel CUDA and OpenMP Implementations of Particle Swarm Optimization

    Google Scholar 

  9. Bonyadi, M.R., Michalewicz, Z.: Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 20, 370–385 (2016). ISSN 1089–778X

    Article  Google Scholar 

  10. Chen, T.-Y., Chi, T.-M.: On the improvements of the particle swarm optimization algorithm. Adv. Eng. Soft. 41(2), 229–239 (2010)

    Article  Google Scholar 

  11. Clerc, M.: Standard Particle Swarm Optimization, 19 November 2018. http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf

  12. Molga, M., Smutnicki, C.: Test functions for optimization needs, 19 November 2018. http://new.zsd.iiar.pwr.wroc.pl/files/docs/functions.pdf

  13. Isikveren, A., et al.: Optimization of commercial aircraft utilizing battery-based voltaic-joule/Brayton propulsion. J. Airc. 54, 246–261 (2016)

    Article  Google Scholar 

  14. Jong-Yul, K., et al.: PC cluster based parallel PSO algorithm for optimal power flow. In: Proceedings of the International Conference on Intelligent Systems Applications to Power Systems (2007)

    Google Scholar 

  15. Kahar, N.H.B.A., Zobaa, A.F.: Optimal single tuned damped filter for mitigating harmonics using MIDACO. In: 2017 IEEE International Conference on Environment and Electrical Engineering (2017)

    Google Scholar 

  16. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks (1995)

    Google Scholar 

  18. Laguna-Sánchez, G.A., et al.: Comparative study of parallel variants for a particle swarm optimization algorithm implemented on a multithreading GPU. J. Appl. Res. Technol. 7, 292–307 (2009)

    Google Scholar 

  19. Latter, B.D.H.: The island model of population differentiations: a general solution. Genetics 73(1), 147–157 (1973)

    MathSciNet  Google Scholar 

  20. Liu, Z., et al.: OpenMP-based multi-core parallel cooperative PSO with ICS using machine learning for global optimization problem. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (2015)

    Google Scholar 

  21. Mahajan, N.R., Mysore, S.P.: Combinatorial neural inhibition for stimulus selection across space. bioRxiv (2018)

    Google Scholar 

  22. Roberge, V., Tarbouchi, M.: Comparison of parallel particle swarm optimizers for graphical processing units and multicore processors. J. Comput. Intell. Appl. 12, 1350006 (2013)

    Article  Google Scholar 

  23. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation (1998)

    Google Scholar 

  24. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0040810

    Chapter  Google Scholar 

  25. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997). ISSN 1573–2916

    Article  MathSciNet  Google Scholar 

  26. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  27. Zambrano-Bigiarini, M., Clerc, M., Rojas, R.: Standard particle swarm optimisation 2011 at CEC-2013: a baseline for future PSO improvements. In: Proceedings of the Congress on Evolutionary Computation (2013)

    Google Scholar 

  28. Zhang, J., et al.: A fast restarting particle swarm optimizer. In: 2014 IEEE Congress on Evolutionary Computation (CEC) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romeo Shuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shuka, R., Brehm, J. (2019). A Parallel Adaptive Swarm Search Framework for Solving Black-Box Optimization Problems. In: Schoeberl, M., Hochberger, C., Uhrig, S., Brehm, J., Pionteck, T. (eds) Architecture of Computing Systems – ARCS 2019. ARCS 2019. Lecture Notes in Computer Science(), vol 11479. Springer, Cham. https://doi.org/10.1007/978-3-030-18656-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18656-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18655-5

  • Online ISBN: 978-3-030-18656-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics