Skip to main content

From Phenotyping to Phenomics: Present and Future Approaches in Grape Trait Analysis to Inform Grape Gene Function

  • Chapter
  • First Online:
The Grape Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Phenotyping in grapevines is the assessment of qualitative and quantitative traits including growth, development, tolerance, resistance, architecture, physiology, chemistry, ecology, and yield. Traditionally, phenotyping techniques relied on measurement of visual, chemical, physiological, or other characteristics by experts, often at low-throughput. The use of standardized OIV or phenological descriptors and scales to phenotype grapevine traits has provided a good foundation for international adoption of phenotyping standards and cross-comparison of results. However, many of these descriptors are subjective, fail to capture complete trait variation, or may not be relevant to some studies. Phenomics, the future of phenotyping, brings opportunities and challenges in increased throughput, objectivity, precision, dynamic measures, and integration that demand new approaches for standardization, data management, and analysis. Here, with a focus on large-scale genetic studies, such as QTL mapping, we describe current phenotyping approaches and their limitations and introduce some future opportunities in phenomics, including the promotion of FAIR data principles of Findability, Accessibility, Interoperability, and Reusability.

All authors made equal contributions to this chapter.

Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture (USDA). USDA is an equal opportunity provider and employer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamchuk VI, Hummel JW, Morgan MT, Upadhyaya SK (2004) On-the-go soil sensors for precision agriculture. Comput Electron Agric 44:71–91

    Article  Google Scholar 

  • Alaimo S, Marceca GP, Giugno R et al (2017) Current knowledge and computational techniques for grapevine meta-omics analysis. Front Plant Sci 8:2241

    Article  PubMed  Google Scholar 

  • Alaniz S, Armengol J, García-Jiménez J et al (2009) A multiplex PCR system for the specific detection of Cylindrocarpon liriodendri, C. macrodidymum, and C. pauciseptatum from Grapevine. Plant Dis 93:821–825

    Article  CAS  PubMed  Google Scholar 

  • Anastasiou E, Balafoutis A, Darra N et al (2018) Satellite and proximal sensing to estimate the yield and quality of table grapes. Collect FAO Agric 8:94

    Google Scholar 

  • Aquino A, Barrio I, Diago M-P et al (2018) vitisBerry: an Android-smartphone application to early evaluate the number of grapevine berries by means of image analysis. Comput Electron Agric 148:19–28

    Article  Google Scholar 

  • Atkinson JA, Pound MP, Bennett MJ, Wells DM (2018) Uncovering the hidden half of plants using new advances in root phenotyping. Curr Opin Biotechnol 55:1–8

    Article  PubMed  CAS  Google Scholar 

  • Auat Cheein F, Steiner G, Perez Paina G, Carelli R (2011) Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection. Comput Electron Agric 78:195–207

    Article  Google Scholar 

  • Ban Y, Mitani N, Sato A et al (2016) Genetic dissection of quantitative trait loci for berry traits in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica 211:295–310

    Article  Google Scholar 

  • Barba P, Cadle-Davidson L, Harriman J et al (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73–84

    Article  CAS  PubMed  Google Scholar 

  • Barba P, Lillis J, Luce RS et al (2018) Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines. Theor Appl Genet 131:1173–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrios-Masias FH, Knipfer T, McElrone AJ (2015) Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization. J Exp Bot 66:6069–6078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates T, Dresser J, Eckstrom R, et al (2018) Variable-rate mechanical crop adjustment for crop load balance in “Concord” vineyards. In: 2018 IoT vertical and topical summit on agriculture—Tuscany (IOT Tuscany), pp 1–4

    Google Scholar 

  • Bautista-Ortín AB, Martínez-Hernández A, Ruiz-García Y et al (2016) Anthocyanins influence tannin–cell wall interactions. Food Chem 206:239–248

    Article  PubMed  CAS  Google Scholar 

  • Bellvert J, Zarco-Tejada PJ, Girona J, Fereres E (2014) Mapping crop water stress index in a “Pinot-noir” vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis Agric 15:361–376

    Article  Google Scholar 

  • Benheim D, Rochfort S, Ezernieks V et al (2011) Early detection of grape phylloxera (Daktulosphaira vitifoliae Fitch) infestation through identification of chemical biomarkers. Acta Hortic 904:17–24

    Google Scholar 

  • Billet K, Houillé B, Dugé de Bernonville T et al (2018) Field-based metabolomics of Vitis vinifera L. stems provides new insights for genotype discrimination and polyphenol metabolism structuring. Front Plant Sci 9:798

    Article  PubMed  PubMed Central  Google Scholar 

  • Bindon KA, Madani SH, Pendleton P et al (2014) Factors affecting skin tannin extractability in ripening grapes. J Agric Food Chem 62:1130–1141

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Ulate B, Amrine KCH, Collins TS et al (2015) Developmental and metabolic plasticity of white-skinned grape berries in response to Botrytis cinerea during noble rot. Plant Physiol 169:2422–2443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blasi P, Blanc S, Wiedemann-Merdinoglu S et al (2011) Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew. Theor Appl Genet 123:43–53

    Article  PubMed  Google Scholar 

  • Blein-Nicolas M, Albertin W, Valot B et al (2013) Yeast proteome variations reveal different adaptive responses to grape must fermentation. Mol Biol Evol 30:1368–1383

    Article  CAS  PubMed  Google Scholar 

  • Boonham N, Kreuze J, Winter S et al (2014) Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res 186:20–31

    Article  CAS  PubMed  Google Scholar 

  • Boso S, Gago P, Alonso-Villaverde V et al (2016) Density and size of stomata in the leaves of different hybrids (Vitis sp.) and Vitis vinifera varieties. Vitis. https://doi.org/10.5073/vitis.2016.55.17-22

    Article  Google Scholar 

  • Brewer MT, Cadle-Davidson L, Cortesi P et al (2011) Identification and structure of the mating-type locus and development of PCR-based markers for mating type in powdery mildew fungi. Fungal Genet Biol 48:704–713

    Article  CAS  PubMed  Google Scholar 

  • Bronson K, Knezevic I (2016) Big Data in food and agriculture. Big Data Soc 3:2053951716648174

    Article  Google Scholar 

  • Cadle-Davidson L (2008) Monitoring pathogenesis of natural Botrytis cinerea infections in developing grape berries. Am J Enol Vitic 59:387–395

    CAS  Google Scholar 

  • Cadle-Davidson L, Gadoury D, Fresnedo-Ramírez J et al (2016) Lessons from a phenotyping center revealed by the genome-guided mapping of powdery mildew resistance loci. Phytopathology 106:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Caffarra A, Eccel E (2011) Projecting the impacts of climate change on the phenology of grapevine in a mountain area: effects of climate change on grape phenology. Aust J Grape Wine Res 17:52–61

    Article  Google Scholar 

  • Callen ST, Klein LL, Miller AJ (2016) Climatic niche characterization of 13 North American Vitis species. Am J Enol Vitic 67:339–349

    Article  Google Scholar 

  • Castro AJ, Carapito C, Zorn N et al (2005) Proteomic analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stress. J Exp Bot 56:2783–2795

    Article  CAS  PubMed  Google Scholar 

  • Cevallos-Cevallos JM, Reyes-De-Corcuera JI, Etxeberria E et al (2009) Metabolomic analysis in food science: a review. Trends Food Sci Technol 20:557–566

    Article  CAS  Google Scholar 

  • Chaïb J, Torregrosa L, Mackenzie D et al (2010) The grape microvine—a model system for rapid forward and reverse genetics of grapevines: Grape microvines. Plant J 62:1083–1092

    Google Scholar 

  • Chitarrini G, Soini E, Riccadonna S et al (2017) Identification of biomarkers for defense response to Plasmopara viticola in a resistant grape variety. Front Plant Sci 8:1524

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuine I, Yiou P, Viovy N et al (2004) Historical phenology: grape ripening as a past climate indicator. Nature 432:289–290

    Article  CAS  PubMed  Google Scholar 

  • Comas LH, Becker SR, Cruz VMV et al (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Coombe BG (1995) Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:104–110

    Article  Google Scholar 

  • Coppens F, Wuyts N, Inzé D, Dhondt S (2017) Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Curr Opin Syst Biol 4:58–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Correa J, Mamani M, Muñoz-Espinoza C et al (2014) Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theor Appl Genet 127:1143–1162

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Ortuño MF, Lopes CM, Chaves MM (2012) Grapevine varieties exhibiting differences in stomatal response to water deficit. Funct Plant Biol 39:179–189

    Article  PubMed  Google Scholar 

  • Coupel-Ledru A, Lebon É, Christophe A et al (2014) Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache × Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. J Exp Bot 65:6205–6218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coupel-Ledru A, Lebon E, Christophe A et al (2016) Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc Natl Acad Sci USA 113:8963–8968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crupi P, Bergamini C, Perniola R et al (2015) A chemometric approach to identify the grape cultivar employed to produce nutraceutical fruit juice. Eur Food Res Technol 241:487–496

    Article  CAS  Google Scholar 

  • Czemmel S, Stracke R, Weisshaar B et al (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151:1513–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalbó MA, Ye GN, Weeden NF et al (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333–340

    Article  PubMed  Google Scholar 

  • Dami IE, Li S, Zhang Y (2016) Evaluation of primary bud freezing tolerance of twenty-three winegrape cultivars new to the Eastern United States. Am J Enol Vitic 67:139–145

    Article  CAS  Google Scholar 

  • De Rosso M, Tonidandel L, Larcher R et al (2014) Identification of new flavonols in hybrid grapes by combined liquid chromatography–mass spectrometry approaches. Food Chem 163:244–251

    Article  PubMed  CAS  Google Scholar 

  • Delaunois B, Colby T, Belloy N et al (2013) Large-scale proteomic analysis of the grapevine leaf apoplastic fluid reveals mainly stress-related proteins and cell wall modifying enzymes. BMC Plant Biol 13:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delsart C, Ghidossi R, Poupot C et al (2012) Enhanced extraction of phenolic compounds from Merlot grapes by pulsed electric field treatment. Am J Enol Vitic 63:205–211

    Article  CAS  Google Scholar 

  • Di Carli M, Zamboni A, Pè ME et al (2011) Two-dimensional differential in gel electrophoresis (2D-DIGE) analysis of grape berry proteome during postharvest withering. J Proteome Res 10:429–446

    Article  PubMed  CAS  Google Scholar 

  • Dokoozlian NK (1999) Chilling temperature and duration interact on the Budbreak of ‘Perlette’ grapevine cuttings. HortScience 34:1–3

    Article  Google Scholar 

  • Doligez A, Bouquet A, Danglot Y et al (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795

    Article  CAS  PubMed  Google Scholar 

  • Doligez A, Adam-Blondon AF, Cipriani G et al (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382

    Article  CAS  PubMed  Google Scholar 

  • Donoso A, Valenzuela S (2018) In-field molecular diagnosis of plant pathogens: recent trends and future perspectives. Plant Pathol 67:1451–1461

    Article  Google Scholar 

  • Dorj U-O, Lee M, Yun S-S (2017) An yield estimation in citrus orchards via fruit detection and counting using image processing. Comput Electron Agric 140:103–112

    Article  Google Scholar 

  • Dubiela CR, Fajardo TVM, Souto ER et al (2013) Simultaneous detection of Brazilian isolates of grapevine viruses by TaqMan real-time RT-PCR. Trop Plant Pathol 38:158–165

    Article  Google Scholar 

  • Duchene E (2016) How can grapevine genetics contribute to the adaptation to climate change? OENO One. https://doi.org/10.20870/oeno-one.2016.50.3.98

    Article  Google Scholar 

  • Duursma RA, Blackman CJ, Lopéz R et al (2018) On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytol. https://doi.org/10.1111/nph.15395

    Article  PubMed  Google Scholar 

  • Ershadi A, Karimi R, Mahdei KN (2015) Freezing tolerance and its relationship with soluble carbohydrates, proline and water content in 12 grapevine cultivars. Acta Physiol Plant 38:2

    Article  CAS  Google Scholar 

  • Failmezger H, Lempe J, Khadem N et al (2018) MowJoe: a method for automated-high throughput dissected leaf phenotyping. Plant Methods 14:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Fechter I, Hausmann L, Zyprian E et al (2014) QTL analysis of flowering time and ripening traits suggests an impact of a genomic region on linkage group 1 in Vitis. Theor Appl Genet 127:1857–1872

    Article  PubMed  Google Scholar 

  • Fennell AY, Schlauch KA, Gouthu S et al (2015) Short day transcriptomic programming during induction of dormancy in grapevine. Front Plant Sci 6:834

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson JC, Tarara JM, Mills LJ et al (2011) Dynamic thermal time model of cold hardiness for dormant grapevine buds. Ann Bot 107:389–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson JC, Moyer MM, Mills LJ et al (2014) Modeling dormant bud cold hardiness and budbreak in twenty-three Vitis genotypes reveals variation by region of origin. Am J Enol Vitic 65:59–71

    Article  Google Scholar 

  • Fila G, Di Lena B, Gardiman M et al (2012) Calibration and validation of grapevine budburst models using growth-room experiments as data source. Agric For Meteorol 160:69–79

    Article  Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M et al (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Galmés J, Gallé A et al (2010) Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust J Grape Wine Res 16:106–121

    Article  CAS  Google Scholar 

  • Font D, Pallejà T, Tresanchez M et al (2014a) A proposal for automatic fruit harvesting by combining a low cost stereovision camera and a robotic arm. Sensors 14:11557–11579

    Article  PubMed  PubMed Central  Google Scholar 

  • Font D, Pallejà T, Tresanchez M et al (2014b) Counting red grapes in vineyards by detecting specular spherical reflection peaks in RGB images obtained at night with artificial illumination. Comput Electron Agric 108:105–111

    Article  Google Scholar 

  • Frenkel O, Portillo I, Brewer MT et al (2012) Development of microsatellite markers from the transcriptome of Erysiphe necator for analysing population structure in North America and Europe: polymorphic markers from the Erysiphe necator transcriptome. Plant Pathol 61:106–119

    Article  CAS  Google Scholar 

  • Fuller MP, Telli G (1999) An investigation of the frost hardiness of grapevine (Vitis vinifera) during bud break. Ann Appl Biol 135:589–595

    Article  Google Scholar 

  • Furbank RT (2009) Foreword: plant phenomics: from gene to form and function. Funct Plant Biol 36:v–vi

    Article  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Gadoury DM (2015) Climate, asynchronous phenology, ontogenic resistance, and the risk of disease in deciduous fruit crops. IOBC-WPRS Bull 110:15–24

    Google Scholar 

  • Gale EJ, Moyer MM (2017) Cold hardiness of Vitis vinifera roots. Am J Enol Vitic 68:468–477

    Article  Google Scholar 

  • García de Cortázar-Atauri I, Duchêne E, Destrac-Irvine A et al (2017) Grapevine phenology in France: from past observations to future evolutions in the context of climate change. OENO One 51:115

    Article  Google Scholar 

  • Garris A, Clark L, Owens C et al (2009) Mapping of photoperiod-induced growth cessation in the wild grape Vitis riparia. J Am Soc Hortic Sci 134:261–272

    Article  Google Scholar 

  • George IS, Pascovici D, Mirzaei M, Haynes PA (2015) Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism. Proteomics 15:3048–3060

    Article  CAS  PubMed  Google Scholar 

  • George IS, Fennell AY, Haynes PA (2018) Shotgun proteomic analysis of photoperiod regulated dormancy induction in grapevine. J Proteom 187:13–24

    Article  CAS  Google Scholar 

  • Ghan R, Van Sluyter SC, Hochberg U et al (2015) Five omic technologies are concordant in differentiating the biochemical characteristics of the berries of five grapevine (Vitis vinifera L.) cultivars. BMC Genom 16:946

    Article  CAS  Google Scholar 

  • Granier C, Aguirrezabal L, Chenu K et al (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169:623–635

    Article  PubMed  Google Scholar 

  • Greer DH, Weedon MM (2013) The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening. Front Plant Sci 4:491

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimplet J, Wheatley MD, Jouira HB et al (2009) Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics 9:2503–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall ME, Loeb GM, Cadle-Davidson L et al (2018) Grape sour rot: a four-way interaction involving the host, yeast, acetic acid bacteria, and insects. Phytopathology. https://doi.org/10.1094/phyto-03-18-0098-r

    Article  PubMed  Google Scholar 

  • Hemming J, Ruizendaal J, Hofstee JW, van Henten EJ (2014) Fruit detectability analysis for different camera positions in sweet-pepper. Sensors 14:6032–6044

    Article  PubMed  PubMed Central  Google Scholar 

  • Henderson SW, Baumann U, Blackmore DH et al (2014) Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biol 14:273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henderson SW, Dunlevy JD, Wu Y et al (2017) Functional differences in transport properties of natural HKT1;1 variants influence shoot Na + exclusion in grapevine rootstocks. New Phytol. https://doi.org/10.1111/nph.14888

    Article  PubMed  Google Scholar 

  • Hoffmann S, Di Gaspero G, Kovács L et al (2008) Resistance to Erysiphe necator in the grapevine “Kishmish vatkana” is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet 116:427–438

    Article  CAS  PubMed  Google Scholar 

  • Hopper DW, Ghan R, Cramer GR (2014) A rapid dehydration leaf assay reveals stomatal response differences in grapevine genotypes. Hortic Res 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou L, Zhang G, Zhao F et al (2018) VvBAP1 is involved in cold tolerance in Vitis vinifera L. Front Plant Sci 9:726

    Article  PubMed  PubMed Central  Google Scholar 

  • Houel C, Chatbanyong R, Doligez A et al (2015) Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip. BMC Plant Biol 15:205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-F, Bertrand Y, Guiraud J-L et al (2013) Expression QTL mapping in grapevine—revisiting the genetic determinism of grape skin colour. Plant Sci 207:18–24

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-F, Vialet S, Guiraud J-L et al (2014) A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry. New Phytol 201:795–809

    Article  CAS  PubMed  Google Scholar 

  • Ihlow A, Schweizer P, Seiffert U (2008) A high-throughput screening system for barley/powdery mildew interactions based on automated analysis of light micrographs. BMC Plant Biol 8:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaillon O, Aury J-M, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jastrzembski JA, Bee MY, Sacks GL (2017) Trace-level volatile quantitation by direct analysis in real time mass spectrometry following headspace extraction: optimization and validation in grapes. J Agric Food Chem 65:9353–9359

    Article  CAS  PubMed  Google Scholar 

  • Jellouli N, Ben Jouira H, Skouri H et al (2008) Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress. J Plant Physiol 165:471–481

    Article  CAS  PubMed  Google Scholar 

  • Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73:319–343

    Article  Google Scholar 

  • Jorge TF, Rodrigues JA, Caldana C et al (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35:620–649

    Article  CAS  PubMed  Google Scholar 

  • Kambiranda D, Katam R, Basha SM, Siebert S (2014) iTRAQ-based quantitative proteomics of developing and ripening muscadine grape berry. J Proteome Res 13:555–569

    Article  CAS  PubMed  Google Scholar 

  • Katam R, Chibanguza K, Latinwo LM, Smith D (2015) Proteome biomarkers in xylem reveal pierce’s disease tolerance in grape. J Proteom Bioinform 8:217–224

    Google Scholar 

  • Kicherer A, Herzog K, Pflanz M et al (2015) An automated field phenotyping pipeline for application in grapevine research. Sensors 15:4823–4836

    Article  PubMed  PubMed Central  Google Scholar 

  • Kicherer A, Herzog K, Bendel N et al (2017a) Phenoliner: a new field phenotyping platform for grapevine research. Sensors 17:1625. https://doi.org/10.3390/s17071625

    Article  PubMed Central  Google Scholar 

  • Kicherer A, Klodt M, Sharifzadeh S et al (2017b) Automatic image-based determination of pruning mass as a determinant for yield potential in grapevine management and breeding: image-based automated estimation of pruning mass. Aust J Grape Wine Res 23:120–124

    Article  Google Scholar 

  • Koch B, Oehl F (2018) Climate change favors grapevine production in temperate zones. AS 09:247–263

    Article  CAS  Google Scholar 

  • Koyama K, Kamigakiuchi H, Iwashita K et al (2017) Polyphenolic diversity and characterization in the red-purple berries of East Asian wild Vitis species. Phytochemistry 134:78–86

    Article  CAS  PubMed  Google Scholar 

  • Kuska M, Wahabzada M, Leucker M et al (2015) Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant–pathogen interactions. Plant Methods 11:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Kustas WP, Anderson MC, Alfieri JG et al (2018) The grape remote sensing atmospheric profile and evapotranspiration experiment (GRAPEX). Bull Am Meteorol Soc. https://doi.org/10.1175/bams-d-16-0244.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahogue F, This P, Bouquet A (1998) Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950–959

    Article  CAS  Google Scholar 

  • Lavoie-Lamoureux A, Sacco D, Risse P-A, Lovisolo C (2017) Factors influencing stomatal conductance in response to water availability in grapevine: a meta-analysis. Physiol Plant 159:468–482

    Article  CAS  PubMed  Google Scholar 

  • Leolini L, Moriondo M, Fila G et al (2018) Late spring frost impacts on future grapevine distribution in Europe. Field Crops Res 222:197–208

    Article  Google Scholar 

  • Liang Z, Yang Y, Cheng L, Zhong G-Y (2012) Polyphenolic composition and content in the ripe berries of wild Vitis species. Food Chem 132:730–738

    Article  CAS  Google Scholar 

  • Lindblom J, Lundström C, Ljung M, Jonsson A (2017) Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precis Agric 18:309–331

    Article  Google Scholar 

  • Lindén L, Palonen P, Lindén M (2000) Relating freeze-induced electrolyte leakage measurements to lethal temperature in red raspberry. J Am Soc Hortic Sci 125:429–435

    Article  Google Scholar 

  • Liu G-T, Wang J-F, Cramer G et al (2012) Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol 12:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu G-T, Ma L, Duan W et al (2014) Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC Plant Biol 14:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Londo JP, Johnson LM (2014) Variation in the chilling requirement and budburst rate of wild Vitis species. Environ Exp Bot 106:138–147

    Article  Google Scholar 

  • Londo JP, Kovaleski AP (2017) Characterization of wild North American grapevine cold hardiness using differential thermal analysis. Am J Enol Vitic 68:203–212

    Article  Google Scholar 

  • Londo JP, Kovaleski AP, Lillis JA (2018) Divergence in the transcriptional landscape between low temperature and freeze shock in cultivated grapevine (Vitis vinifera). Hortic Res 5:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lovisolo C, Tramontini S (2010) Methods for assessment of hydraulic conductance and embolism extent in grapevine organs. In: Delrot S, Medrano H, Or E, Bavaresco L, Grando S (eds) Methodologies and results in grapevine research. Springer, Dordrecht, pp 71–85

    Chapter  Google Scholar 

  • Lowenberg-DeBoer J, Boehlje M (1996) Revolution, evolution or dead-end: economic perspectives on precision agriculture. In: Robert PC, Rust RH and Larson WE (eds) Precision agriculture. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 923–944

    Google Scholar 

  • Luedeling E (2012) Climate change impacts on winter chill for temperate fruit and nut production: a review. Sci Hortic 144:218–229

    Article  Google Scholar 

  • Marks VD, van der Merwe GK, van Vuuren HJJ (2003) Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate. FEMS Yeast Res 3:269–287

    Article  CAS  PubMed  Google Scholar 

  • Marti G, Schnee S, Andrey Y et al (2014) Study of leaf metabolome modifications induced by UV-C radiations in representative Vitis, Cissus and Cannabis species by LC–MS based metabolomics and antioxidant assays. Molecules 19:14004–14021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-Esteso MJ, Sellés-Marchart S, Lijavetzky D et al (2011) A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. J Exp Bot 62:2521–2569

    Article  PubMed  CAS  Google Scholar 

  • McCartney HA, Foster SJ, Fraaije BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 59:129–142

    Article  CAS  PubMed  Google Scholar 

  • Medrano H, Tomás M, Martorell S, Flexas J, Hernández E, Rosselló J, Pou A, Escalona JM, Bota J (2015) From leaf to whole-plant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target. Crop J 3(3):220–228

    Article  Google Scholar 

  • Mehta SS, Burks TF (2014) Vision-based control of robotic manipulator for citrus harvesting. Comput Electron Agric 102:146–158

    Article  Google Scholar 

  • Mills LJ, Ferguson JC, Keller M (2006) Cold-hardiness evaluation of grapevine buds and cane tissues. Am J Enol Vitic 57:194–200

    Google Scholar 

  • Minsavage GV, Thompson CM, Hopkins DL et al (1994) Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathology 84:456–461

    Article  CAS  Google Scholar 

  • Mira de Orduña R (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43:1844–1855

    Article  CAS  Google Scholar 

  • Moorehead SJ, Wellington CK, Gilmore BJ, Vallespi C (2012) Automating orchards: a system of autonomous tractors for orchard maintenance. In: Proceedings of the IEEE international conference of intelligent robots and systems; workshop on agricultural robots

    Google Scholar 

  • Morin X, Améglio T, Ahas R et al (2007) Variation in cold hardiness and carbohydrate concentration from dormancy induction to bud burst among provenances of three European oak species. Tree Physiol 27:817–825

    Article  CAS  PubMed  Google Scholar 

  • Mosedale JR, Wilson RJ, Maclean IMD (2015) Climate change and crop exposure to adverse weather: changes to frost risk and grapevine flowering conditions. PLoS ONE 10:e0141218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mozell MR, Thach L (2014) The impact of climate change on the global wine industry: challenges & solutions. Wine Econ Policy 3:81–89

    Article  Google Scholar 

  • Negrel L, Halter D, Wiedemann-Merdinoglu S et al (2018) Identification of lipid markers of Plasmopara viticola infection in grapevine using a non-targeted metabolomic approach. Front Plant Sci 9:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Negri AS, Prinsi B, Rossoni M et al (2008) Proteome changes in the skin of the grape cultivar Barbera among different stages of ripening. BMC Genom 9:378

    Article  CAS  Google Scholar 

  • OIV (2018) OIV descriptor list for grape varieties and Vitis species. In: The International Organization of Vine and Wine, 2nd edn. http://www.oiv.int/public/medias/2274/code-2e-edition-finale.pdf

  • Pagay V, Santiago M, Sessoms DA et al (2014) A microtensiometer capable of measuring water potentials below −10 MPa. Lab Chip 14:2806–2817

    Article  CAS  PubMed  Google Scholar 

  • Pagter M, Williams M (2011) Frost dehardening and rehardening of Hydrangea macrophylla stems and buds. HortScience 46:1121–1126

    Article  Google Scholar 

  • Palmieri MC, Perazzolli M, Matafora V et al (2012) Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. J Exp Bot 63:6237–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pap D, Riaz S, Dry IB et al (2016) Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol 16:170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parpinello GP, Nunziatini G, Rombolà AD et al (2013) Relationship between sensory and NIR spectroscopy in consumer preference of table grape (cv Italia). Postharvest Biol Technol 83:47–53

    Article  Google Scholar 

  • Payne AB, Walsh KB, Subedi PP, Jarvis D (2013) Estimation of mango crop yield using image analysis—segmentation method. Comput Electron Agric 91:57–64

    Article  Google Scholar 

  • Pellegrini E, Campanella A, Paolocci M et al (2015) Functional leaf traits and diurnal dynamics of photosynthetic parameters predict the behavior of grapevine varieties towards ozone. PLoS ONE 10:e0135056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pendergrass SA, Verma A, Okula A et al (2015) Phenome-wide association studies: embracing complexity for discovery. Hum Hered 79:111–123

    Article  CAS  PubMed  Google Scholar 

  • Picariello G, Ferranti P, Garro G et al (2014) Profiling of anthocyanins for the taxonomic assessment of ancient purebred V. vinifera red grape varieties. Food Chem 146:15–22

    Article  CAS  PubMed  Google Scholar 

  • Pinasseau L, Vallverdú-Queralt A, Verbaere A et al (2017) Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC–MS based metabolomics. Front Plant Sci 8:1826

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinelli P, Romani A, Fierini E, Agati G (2018) Prediction models for assessing anthocyanins in grape berries by fluorescence sensors: dependence on cultivar, site and growing season. Food Chem 244:213–223

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Nelson RJ (2011) In the eye of the beholder: the effect of rater variability and different rating scales on QTL mapping. Phytopathology 101(2):290–298

    Article  PubMed  Google Scholar 

  • Pou A, Medrano H, Tomàs M et al (2012) Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behaviour. Plant Soil 359:335–349

    Article  CAS  Google Scholar 

  • Povero G, Papale M, Gesualdo L et al (2010) Identification of grapevine cultivar biomarkers using surface-enhanced laser desorption and ionization (SELDI-TOF-MS). Am J Enol Vitic 61:492–497

    Article  CAS  Google Scholar 

  • Rahaman MM, Chen D, Gillani Z et al (2015) Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front Plant Sci 6:619

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossdeutsch L, Edwards E, Cookson SJ et al (2016) ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background. BMC Plant Biol 16:91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saito S, Suzuki S, Takayanagi T (2009) Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes. Pest Manag Sci 65:197–204

    Article  CAS  PubMed  Google Scholar 

  • Salazar Parra C, Aguirreolea J, Sánchez-Díaz M et al (2010) Effects of climate change scenarios on Tempranillo grapevine (Vitis vinifera L.) ripening: response to a combination of elevated CO2 and temperature, and moderate drought. Plant Soil 337:179–191

    Article  CAS  Google Scholar 

  • Salazar-Parra C, Aranjuelo I, Pascual I et al (2015) Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. J Plant Physiol 174:97–109

    Article  CAS  PubMed  Google Scholar 

  • Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13

    Article  Google Scholar 

  • Santesteban LG, Guillaume S, Royo JB, Tisseyre B (2013) Are precision agriculture tools and methods relevant at the whole-vineyard scale? Precis Agric 14:2–17

    Article  Google Scholar 

  • Schoedl K, Schuhmacher R, Forneck A (2013) Correlating physiological parameters with biomarkers for UV-B stress indicators in leaves of grapevine cultivars Pinot noir and Riesling. J Agric Sci 151:189–200

    Article  CAS  Google Scholar 

  • Schueuermann C, Steel CC, Blackman JW et al (2019) A GC–MS untargeted metabolomics approach for the classification of chemical differences in grape juices based on fungal pathogen. Food Chem 270:375–384

    Article  CAS  PubMed  Google Scholar 

  • Schultz H (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Aust J Grape Wine Res 6:2–12

    Article  CAS  Google Scholar 

  • Serra I, Strever A, Myburgh PA, Deloire A (2014) Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine: Rootstocks to enhance drought tolerance in grapevine. Aust J Grape Wine Res 20:1–14

    Article  Google Scholar 

  • Shavrukov YN, Dry IB, Thomas MR (2004) Inflorescence and bunch architecture development in Vitis vinifera L. Aust J Grape Wine Res 10:116–124

    Article  Google Scholar 

  • Shellie K, Kovaleski AP, Londo JP (2018) Water deficit severity during berry development alters timing of dormancy transitions in wine grape cultivar Malbec. Sci Hortic 232:226–230

    Article  CAS  Google Scholar 

  • Sherwood RT, Berg CC, Hoover MR, Zeiders KE (1983) Illusions in visual assessment of Stagonospora leaf spot of orchardgrass. Phytopathology 73:173–177

    Article  Google Scholar 

  • Singh A, Ganapathysubramanian B, Singh AK, Sarkar S (2016) Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci 21:110–124

    Article  CAS  PubMed  Google Scholar 

  • Smart DR, Schwass E, Lakso A, Morano L (2006) Grapevine rooting patterns: a comprehensive analysis and a review. Am J Enol Vitic 57:89–104

    Google Scholar 

  • Sommer S, Cohen S (2018) Comparison of different extraction methods to predict anthocyanin concentration and color characteristics of red wines. Fermentation 4:39

    Article  CAS  Google Scholar 

  • Sonka ST (2016) Big data: fueling the next evolution of agricultural innovation. J Innov Manag 4:114–136

    Article  Google Scholar 

  • Spagnolo A, Magnin-Robert M, Alayi TD et al (2012) Physiological changes in green stems of Vitis vinifera L. cv. Chardonnay in response to esca proper and apoplexy revealed by proteomic and transcriptomic analyses. J Proteome Res 11:461–475

    Article  CAS  PubMed  Google Scholar 

  • Springer LF, Sacks GL (2014) Protein-precipitable tannin in wines from Vitis vinifera and interspecific hybrid grapes (Vitis ssp.): differences in concentration, extractability, and cell wall binding. J Agric Food Chem 62:7515–7523

    Article  CAS  PubMed  Google Scholar 

  • Springer LF, Sherwood RW, Sacks GL (2016) Pathogenesis-related proteins limit the retention of condensed tannin additions to red wines. J Agric Food Chem 64:1309–1317

    Article  CAS  PubMed  Google Scholar 

  • Sucu S, Yağcı A, Yıldırım K (2018) Changes in morphological, physiological traits and enzyme activity of grafted and ungrafted grapevine rootstocks under drought stress. Erwerbs-Obstbau 60:127–136

    Article  Google Scholar 

  • Sun R-Z, Cheng G, Li Q et al (2017) Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front Plant Sci 8:547

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweetman C, Sadras VO, Hancock RD et al (2014) Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J Exp Bot 65:5975–5988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Wang Y, Han J et al (2018) Separation, purification of anthocyanin and vitis linn polysaccharide from grape juice by the two-step extraction and dialysis. J Food Process Preserv 42:e13344

    Article  CAS  Google Scholar 

  • Tattersall EAR, Grimplet J, DeLuc L et al (2007) Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct Integr Genom 7:317–333

    Article  CAS  Google Scholar 

  • Taylor JA, Link K, Taft T et al (2017) A protocol to map vine size in commercial single high-wire trellis vineyards using “off-the-shelf” proximal canopy-sensing systems. Catal Discov Pract 1:35–47

    Article  Google Scholar 

  • Teh SL, Fresnedo-Ramírez J, Clark MD et al (2017) Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps. Mol Breed 37:1

    Article  CAS  PubMed  Google Scholar 

  • Tello J, Ibáñez J (2018) What do we know about grapevine bunch compactness? A state-of-the-art review: review on bunch compactness. Aust J Grape Wine Res 24:6–23

    Article  Google Scholar 

  • Tello J, Torres-Pérez R, Grimplet J et al (2015) Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine. BMC Plant Biol 15:253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tello J, Cubero S, Blasco J et al (2016) Application of 2D and 3D image technologies to characterise morphological attributes of grapevine clusters. J Sci Food Agric 96:4575–4583

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Tomás M, Medrano H, Escalona JM et al (2014) Variability of water use efficiency in grapevines. Environ Exp Bot 103:148–157

    Article  Google Scholar 

  • Tomasi D, Jones GV, Giust M et al (2011) Grapevine phenology and climate change: relationships and trends in the Veneto region of Italy for 1964–2009. Am J Enol Vitic 62:329–339

    Article  Google Scholar 

  • Torregrosa L, Bigard A, Doligez A et al (2017) Developmental, molecular and genetic studies on grapevine response to temperature open breeding strategies for adaptation to warming. OENO One 51:155

    Article  CAS  Google Scholar 

  • Toumi I, Gargouri M, Nouairi I et al (2008) Water stress induced changes in the leaf lipid composition of four grapevine genotypes with different drought tolerance. Biol Plant 52:161–164

    Article  CAS  Google Scholar 

  • Väinölä A, McNamara S, Pellett H (1997) Stem and flower bud hardiness of deciduous azaleas. J Environ Hortic 15:45–50

    Google Scholar 

  • Vega A, Gutiérrez RA, Peña-Neira A et al (2011) Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera. Plant Mol Biol 77:261–274

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Versari A, Laurie VF, Ricci A et al (2014) Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Res Int 60:2–18

    Article  CAS  Google Scholar 

  • Vivin P, Lebon É, Dai Z et al (2017) Combining ecophysiological models and genetic analysis: a promising way to dissect complex adaptive traits in grapevine. OENO One 51:181–189

    Article  Google Scholar 

  • Wang C, Han J, Shangguan L et al (2014) Depiction of grapevine phenology by gene expression information and a test of its workability in guiding fertilization. Plant Mol Biol Rep 32:1070–1084

    Article  CAS  Google Scholar 

  • Wang Y, He Y-N, Chen W-K et al (2018) Effects of cluster thinning on vine photosynthesis, berry ripeness and flavonoid composition of Cabernet Sauvignon. Food Chem 248:101–110

    Article  CAS  PubMed  Google Scholar 

  • Ward E, Foster SJ, Fraaije BA, Mccartney HA (2004) Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Ann Appl Biol 145:1–16

    Article  CAS  Google Scholar 

  • Webb LB, Whetton PH, Barlow EWR (2007) Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust J Grape Wine Res 13:165–175

    Article  Google Scholar 

  • Webb LB, Whetton PH, Barlow EWR (2008) Climate change and winegrape quality in Australia. Clim Res 36:99–111

    Article  Google Scholar 

  • Wilkinson MD, Dumontier M, Aalbersberg IJJ et al (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:160018

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolkovich EM, Burge DO, Walker MA, Nicholas KA (2017) Phenological diversity provides opportunities for climate change adaptation in winegrapes. J Ecol 105:905–912

    Article  Google Scholar 

  • Xin H, Zhu W, Wang L et al (2013) Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress. PLoS ONE 8:e58740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Liu G, Liu G et al (2014a) Comparison of investigation methods of heat injury in grapevine (Vitis) and assessment to heat tolerance in different cultivars and species. BMC Plant Biol 14:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu W, Li R, Zhang N et al (2014b) Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. Plant Mol Biol 86:527–541

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lin H, Takahashi Y et al (2011) Proteomic analysis of grapevine stem in response to Xylella fastidiosa inoculation. Physiol Mol Plant Pathol 75:90–99

    Article  CAS  Google Scholar 

  • Yıldırım K, Yağcı A, Sucu S, Tunç S (2018) Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiol Biochem 127:256–268

    Article  PubMed  CAS  Google Scholar 

  • Yuan X, Wu Z, Li H et al (2014) Biochemical and proteomic analysis of “Kyoho” grape (Vitis labruscana) berries during cold storage. Postharvest Biol Technol 88:79–87

    Article  CAS  Google Scholar 

  • Zamboni A, Di Carli M, Guzzo F et al (2010) Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. Plant Physiol 154:1439–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapata D, Salazar-Gutierrez M, Chaves B et al (2017) Predicting key phenological stages for 17 grapevine cultivars (Vitis vinifera L.). Am J Enol Vitic 68:60–72

    Article  Google Scholar 

  • Zarraonaindia I, Owens SM, Weisenhorn P et al (2015) The soil microbiome influences grapevine-associated microbiota. MBio 6:e02527-14. https://doi.org/10.1128/mbio.02527-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zendler D, Schneider P, Töpfer R, Zyprian E (2017) Fine mapping of Ren3 reveals two loci mediating hypersensitive response against Erysiphe necator in grapevine. Euphytica 213:68

    Article  CAS  Google Scholar 

  • Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric 13:693–712

    Article  CAS  Google Scholar 

  • Zhao YH, Guo YS, Lin H et al (2015) Quantitative trait locus analysis of grape weight and soluble solid content. Genet Mol Res 14:9872–9881

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Lee WS, He D (2016) Immature green citrus detection based on colour feature and sum of absolute transformed difference (SATD) using colour images in the citrus grove. Comput Electron Agric 124:243–253

    Article  Google Scholar 

  • Zyprian E, Ochßner I, Schwander F et al (2016) Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol Genet Genom 291:1573–1594

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance Cadle-Davidson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cadle-Davidson, L., Londo, J., Martinez, D., Sapkota, S., Gutierrez, B. (2019). From Phenotyping to Phenomics: Present and Future Approaches in Grape Trait Analysis to Inform Grape Gene Function. In: Cantu, D., Walker, M. (eds) The Grape Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-18601-2_10

Download citation

Publish with us

Policies and ethics