Skip to main content

Energy Cane: A Sound Alternative of a Bioenergy Crop for Tropics and Subtropics

  • Chapter
  • First Online:

Abstract

Biomass is one of the alternatives of renewable energy to aid in the mitigation of greenhouse gases. Sugarcane, traditionally grown in the tropics and subtropics for sugar production, and lately ethanol combustible as well, is recognized as one of the most productive biomass crops. Although sugarcane has higher productivity of biomass than most counterpart options, to its exploitation be competitive and sustainable in a long run, it is necessary to further improve its yielding ability. However, the prevailing paradigm of sugarcane having high sugar content and simultaneously low fiber brought the cultivars to a yield plateau. The alternative to get rid of this hindrance is to produce a type with higher fiber content, despite having a lower concentration of sugar. That type is called energy cane. It does not only produce higher biomass yield but also has higher resilience than sugarcane to withstand stressful conditions prevailing in most growing conditions. In spite of being a new type, it is quite like sugarcane, and so, it can be promptly adopted with only minor adjustments in its management, both in the field and the industry. This makes energy cane an innovation with great economic advantage to produce the much-needed bio-combustibles, either by first- or second-generation processes, mainly in the tropics and subtropics. Further, it opens a large window to transform the old sugarcane agroindustry into modern refineries able to produce derivatives like those presently originated from petroleum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1G:

First-generation

2G:

Second-generation

ACIAR:

Australian Centre for International Agricultural Research

BC1:

First backcross

BC2:

Second backcross

BC3:

Third backcross

COP21:

2015 Paris Climate Conference

CSC:

Conventional sugarcane

EC:

Energy cane

EU:

European Union

F1:

First cross hybrid

FAO:

Food and Agricultural Organization

GHG:

Greenhouse gases

Mha:

Million hectares

OECD:

Organization for Economic Co-operation and Development

REN21:

Renewable Energy Policy Network for the 21st Century

SCOPE/72:

Scientific Committee on Problems of the Environment

t ha−1:

tons per hectare

UNFCC:

United Nations Framework Convention on Climate Change

USA:

United States of America

USDA:

United States Department of Agriculture

References

  • Afionis S, Stringer LC, Favretto N, Tomei J, Buckeridge M (2016) Unpacking Brazil’s leadership in the global biofuels arena: Brazil ethanol diplomacy in Africa. Glob Environ Polit 16:3. https://doi.org/10.1162/GLEP_a_00369

  • Alexander AG (1980) The potentials of sugarcane as a renewable energy resource for developing tropical nations. In: King A, Cleveland H (eds) Bioresources for development. The renewable way of life. Pergamon Press, New York, pp 223–236

    Google Scholar 

  • Alexander AG (1985) The energy cane alternative. Elsevier, Amsterdam

    Google Scholar 

  • Amaral WAN, Marinho JP, Tarasantchi R, Beber A, Guiliani E (2008) Environmental sustainability of sugarcane ethanol in Brazil. In: Zuurbier P, van der Vooren J (eds) Sugarcane ethanol: contributions to climate change mitigation and the environment. Academic Publishers, Wageningen, pp 113–138

    Google Scholar 

  • Annicchiarico P (2002) Genotype x environment interactions. Challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Papers No. 174. http://www.fao.org/docrep/005/y4391e/y4391e00.htm. Accessed 27 July 2017

  • Aragon D, Suhr M, Kochorgin V (2013) Evaluation of energy cane and sweet sorghum as feedstocks for conversion into fuels and chemicals. Sugar Industry 138(10):651–655

    Google Scholar 

  • Arni SA, Converti A (2012) Conversion of sugarcane bagasse into a resource. In: Goncalves JF, Correia KD (eds) Sugarcane: production, cultivation, and uses. Nova Publishers, New York, pp 285–301

    Google Scholar 

  • Babu CN (1965) Genetical studies in Saccharum spontaneum. L. Inheritance of habit and occurrence of sprawlers. In: Proceedings of 12th Congress International Society Sugarcane Technologists, San Juan, pp 1014–1020

    Google Scholar 

  • Bacha CJC (2011) The impacts of agriculture-based energy sources on land use in Brazil. In: Amann E, Baer W, Coes DV (eds) Energy, biofuels and development. Routledge, London, pp 236–255

    Google Scholar 

  • Berding N, Roach BT (1987) Germplasm collection, maintenance, and use. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 143–210

    Chapter  Google Scholar 

  • Berding N, Hogarth M, Cox M (2004) Plant improvement of sugarcane. In: James G (ed) Sugarcane. Blackwell Science, Oxford, pp 20–53

    Chapter  Google Scholar 

  • Bischoff KP, Gravois KA, Reagan TE, Hawkins GL (2008) Registration of “L79-1002” sugarcane. J Plant Registration 2:211–217

    Article  Google Scholar 

  • Blum A (2013) Heterosis, stress, and the environment: a possible road map towards the improvement of crop yield. J Exp Bot 64(16):4829–4837

    Article  CAS  PubMed  Google Scholar 

  • Bonomi A, Cavalett O, Cunha MP, Lima MAP (eds) (2016) Virtual biorefinery. An optimization strategy for renewable carbon valorization. Springer, Heidelberg

    Google Scholar 

  • Borlaug NE (2003) Feeding a world of 10 billion people: the TVA/IFDC Legacy. IFDC – International Center for Soil Fertility and Agricultural Development. Third Lecture, first published in the Travis P. Hignett Memorial Lecture series, Muscle Shoah, Alabama

    Google Scholar 

  • Botha F (2013) The biomass, fiber and sucrose dilemma in realizing the agronomic potential of sugarcane. 2nd Workshop on sugarcane physiology for agronomic applications, Brazilian Bioethanol Science & Technology Laboratory, Campinas, 29 October 2013. Published Dec 20, 2013. https://pt.slideshare.net/Bioetanol/brazil-physiology-october2013clean. Accessed 27 July 2017

  • Botha F, Moore PH (2014) Biomass and bioenergy. In: Moore PH, Botha FC (eds) Sugarcane. Physiology, biochemistry, and functional biology. Wiley-Blackwell, Ames, pp 521–540

    Google Scholar 

  • Brandes EW (1956) Origin, dispersal and use in breeding of the Melanesian garden sugarcanes and their derivative, Saccharum officinarum L. In: Proceedings of 9th Congress International Society Sugarcane Technologists, New Delhi, pp 709–750

    Google Scholar 

  • Brandes EW, Sartoris GB (1936) Sugarcane, its origin and improvement. US Department of Agriculture Yearbook. USDA, Washington, pp 561–623

    Google Scholar 

  • Brown JS, Glaz B (2001) Analysis of resource allocation in final stage of sugarcane cultivar selection. Crop Sci 41:5–62

    Article  Google Scholar 

  • Buanafina MMO, Cosgrove DJ (2014) Cell walls: structure and biogenesis. In: Moore PH, Botha FC (eds) Sugarcane. Physiology, biochemistry, and functional biology. Wiley-Blackwell, Ames, pp 307–377

    Google Scholar 

  • Bull TA, Glasziou KT (1975) Sugarcane. In: Evans LT (ed) Crop Physiology. Some Case Histories. Cambridge University Press, Cambridge, p. 51–72

    Google Scholar 

  • Burner DM, Legendre BL (2000) Phenotypic variation of biomass yield components in F1 hybrids of elite sugarcane crossed with Saccharum officinarum and S. spontaneum. J Am Soc Sugarcane Technol Proc 20:81–87

    Google Scholar 

  • Burnquist WL (2013) Sugarcane research and development: a view from the private sector. In: Proceedings of 28th Congress International Society Sugarcane Technologists, São Paulo, pp 33–39

    Google Scholar 

  • Byrt CS, Grof CPL, Furbank RT (2011) C4 Plants as biofuel feedstocks: optimizing biomass production and feedstock quality from a lignocellulosic perspective. J Integr Plant Biol 53:120–135

    Article  CAS  PubMed  Google Scholar 

  • Carvalho-Netto OV, Bressiani JA, Soriano H, Fiori CS, Santos JM, Barbosa GVS (2014) The potential of the energy cane as the main biomass crop for the cellulosic industry. Chem Biol Technol Agric 2014:1–20. https://doi.org/10.1186/s40538-014-0020-2

    Article  CAS  Google Scholar 

  • Chapman LS, Wilson JR (1996) Economics of ratoon cycle length in sugarcane. In: Wilson JR, Hogarth DM, Campbell JA, Garside AL (eds) Sugarcane research towards efficient and sustainable production. CSIRO Division of Tropical Crops and Pastures, Brisbane, pp 169–171

    Google Scholar 

  • Chen H (2014) Biotechnology of lignocellulose: theory and practice. Chemical Industry Press and Springer Science+Business Media, London

    Book  Google Scholar 

  • Chudasama A (2013) Knowledge, an underexploited input for increasing not only cane productivity. In: Proceedings of 28th Congress International Society Sugar Cane Technologists, São Paulo, pp 14–32

    Google Scholar 

  • Coleman DC (2016) Soil biology and organisms. In: Richardson S (ed) International encyclopedia of geography, 1st edn. Wiley/Interscience, New Jersey, pp 1–8

    Google Scholar 

  • Coors JG, Pandey S (1999) Genetics and exploitation of heterosis in crops. ASA/CSSA, Madison. https://doi.org/10.2134/1999.geneticsandexploitation

    Book  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell. Nat Rev Mol Cell Biol 6(11):850–861

    Article  CAS  PubMed  Google Scholar 

  • Cox M, Hogarth M, Smith G (2000) Cane breeding and improvements. In: Hogarth DM, Allsopp PG (eds) Manual of cane growing. Bureau of Sugar Experiment Stations, Indooroopilly, pp 91–108

    Google Scholar 

  • Cumo C (2016) Plants and people: origin and development of human – plant science relationships. CRC Press, Boca Raton

    Google Scholar 

  • D’Hont A, Souza GM, Menossi M (2008) Sugarcane: a major source of sweetness, alcohol, and bio-energy. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 483–513

    Chapter  Google Scholar 

  • Da Silva JA (2017) The importance of the wild cane Saccharum spontaneum for bioenergy genetic breeding. Sugar Tech 19(3):229–240

    Article  CAS  Google Scholar 

  • Dal-Bianco M, Carneiro MS, Hotta CT, Chapolla RG, Hofmann HP, Garcia AAF (2012) Sugarcane improvement: how far can we go? Curr Opin Biotechnol 23(2):265–270

    Article  CAS  PubMed  Google Scholar 

  • Daniels J (1965) Improving sugarcane breeding methods to increase yield. In: Proceedings of 12th Congress International Society Sugarcane Technologists, San Jaun, pp 742–750

    Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 7–84

    Chapter  Google Scholar 

  • Darnhofer I (2014) Resilience and why it matters for farm management. Eur Rev Agric Econ 41(3):461–484. https://doi.org/10.1093/erae/jbu012

    Article  Google Scholar 

  • De Deyn GB, van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20 (11):625–633

    Google Scholar 

  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082

    Article  Google Scholar 

  • Denison RF (2012) Darwinian agriculture. How understanding evolution can improve agriculture. Princeton University Press, Princeton

    Book  Google Scholar 

  • Dharmawardene N (2005) Sustainable sugarcane ratoon management. In: Solomon S, Grewal SS, Li Y-R, Magarey RC, Rao GP (eds) Sugarcane: production management and agro-industrial imperatives. International Book Distributing Co, Mumbai, pp 95–141

    Google Scholar 

  • Dias MOS, Cavalett O, Maciel Filho R (2016) Integrated first- and second-generation processes for bioethanol production from sugarcane. In: O’Hara IM, Mundree SGH (eds) Sugarcane-based biofuels and bioproducts. Wiley, Hoboken. https://onlinelibrary.wiley.com/doi/pdf/10.1002/978118719862.ch12

  • Dunckelman PH, Breaux RD (1972) Breeding sugarcane varieties for Louisiana with new germplasm. In: Proceedings od 14th Congress International Society Sugarcane Technologists, Baton Rouge, pp 233–239

    Google Scholar 

  • Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the North-Central United States. Crop Sci 39:1622–1630

    Article  Google Scholar 

  • Eberhart SA, Russell WA (1966) Stability parameters for comparing varieties. Crop Sci 6:36–40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x

    Article  Google Scholar 

  • Eggleston G, Lima I (2015) Sustainability issues and opportunities in the sugar and sugar-bioproducts industry. Sustainability 7:12209–12235. https://doi.org/10.3390/su70912209

    Article  CAS  Google Scholar 

  • Eggleston G, Salassi M, Richard E, Birkett H (2007) Sustainability of the sugar industry: future value addition from sugarcane. Int Sugar J 109:415–432

    Google Scholar 

  • Evans LT, Fischer RA (1999) Yield potential: Its definition, measurement, and significance. Crop Sci 39:1544–51

    Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel debt. Science 319:1235–1238

    Article  CAS  PubMed  Google Scholar 

  • Ferreira SS, Nishiyama MY, Paterson AH, Souza GM (2013) Biofuel and energy crops: high-yield Saccharinae take center stage in the post-genomics era. Genome Biol 14(6):210. http://genomebiology.com/2013/14/6/210

  • Finlay KW, Wilkinson GN (1963) The analysis of adaptation in plant-breeding programme. Aust J Agric Res 14:742–754

    Article  Google Scholar 

  • Fischer G, Teixeira E, Hizsnyik ET, van Velthuizen H (2008) Land use dynamics and sugarcane production. In: Zuurbier P, van de Vooren J (eds) Sugarcane ethanol. Wageningen Academic Publishers, Wageningen, pp 29–62

    Google Scholar 

  • Fischer T, Byerlee D, Edmeades G (2014) Crop yields and global food security: will yield increase continue to feed the world? ACIAR, Camberra

    Google Scholar 

  • Frei M (2013) Lignin: characterization of a multifaceted component. Sci World J. Article ID 436517. https://doi.org/10.1155/2013/436517. Accessed 24 July 2017

  • Garside AL, Smith MA, Chapman L, Hurney AP, Magarey RC (1997) The yield plateau in the Australian sugar industry: 1970–1990. In: Keating BA, Wilson JR (eds) Intensive sugarcane production: meeting the challenges beyond 2000. CAB International, Wallingford, pp 103–124

    Google Scholar 

  • Giamalva M, Clark S, Stein J (1984) Sugarcane hybrids of biomass. Biomass 6:61–68

    Article  Google Scholar 

  • Giamalva M, Clark S, Stein J (1985) Conventional vs high fiber sugarcane. J Am Soc Sugar Technol 4:106–109

    Google Scholar 

  • Goldemberg J (2011) The role of biomass in the world’s energy system. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp 3–14

    Chapter  Google Scholar 

  • Goldemberg J, Guardabassi P (2010) The potential for first-generation ethanol production from sugarcane. Biofuels Bioprod Biorefin 4:17–24

    Article  CAS  Google Scholar 

  • Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 36:2086–2097

    Article  Google Scholar 

  • Gouy M, Nibouche S, Hoarau JY, Costet L (2013) Improvement of yield per se in sugarcane. In: Varshney RK, Tuberosa R (eds) Translational genomics for crop breeding, Abiotic stress, yield and quality, vol 2. Wiley-Blackwell, Ames, pp 211–237

    Chapter  Google Scholar 

  • Goulet BE, Roda F, Hopkins R (2017) Hybridization in plants: old ideas, new techniques. Plant Physiol 173(1):65–78

    Google Scholar 

  • Gregory PJ (2006) Roots rhizosphere and soil: The route to a better understanding of soil science? Eur J Soil Sci 57:2–12. https://doi.org/10.1111/j.1365-2389.2005.00778.x

  • Gupta VK, Potumarchi R, O’Donovan A, Kubicek KCP, Sharma GD, Tuohy MG (2014) Bioenergy research: an overview on technological developments and bioresources. In: Gupta VK, Tuohy MG, Kubicek CP, Saddler J, Xu F (eds) Bioenergy research: advances and applications. Elsevier, Amsterdam

    Chapter  Google Scholar 

  • Haberl H, Erb KH, Krausman F, Bondeau A, Lank C, Muller C, Plutzar C, Steinberger JK (2011) Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change diets and yield. Biomater Bioenergy 35:4753–4769

    Article  Google Scholar 

  • Hale AL, Dufrene EO, Tew TL, Pan Y-B, Viator RP, White PM, Veremis JC, White WH, Cobill R, Richard EP Jr et al (2013) Registration of ‘Ho 02-113’ sugarcane. J Plant Regist 7:51–57

    Article  Google Scholar 

  • Hall SJ (2014) Soil and the future of food. Challenges and opportunities for feeding nine billion people. In: Churchman GJ, Landa ER (eds) The soil underfoot. Infinite possibilities for a finite resource. CRC Press, Boca Raton, pp 19–36

    Google Scholar 

  • Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57(2):401–411

    Article  CAS  PubMed  Google Scholar 

  • Inman-Bamber NG, Smith DM (2005) Water relations in sugarcane and response to water deficits. Field Crops Res 92:185–202

    Article  Google Scholar 

  • Inman-Bamber NG, Jackson P, Bonnett G, Morgan T (2011) Have we reached peak CCS? In: Proceedings of Annual Conference of Australian Society for Sugarcane Technologists, vol 33, pp 1–9

    Google Scholar 

  • Irvine JE (1983) Sugarcane. In: Smith WH, Banta SJ (eds) Symposium potential productivity of field crops under different environments. Int Rice Institute, Los Baños, pp 361–381

    Google Scholar 

  • Jackson PA (1994) Genetic relationships between attributes in sugarcane clones closely related to Saccharum spontaneum. Euphytica 79:101–108

    Article  Google Scholar 

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Res 92:277–290

    Article  Google Scholar 

  • Jakob K, Zhou F, Paterson AH (2011) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In: Tomes D, Lakshamanan P, Songstad D (eds) Biofuels. Global impact on renewable energy, production agriculture, and technological advancements. Springer, New York, pp 113–138

    Google Scholar 

  • Janssen R, Turhollow AF, Rutz D, Mergner R (2013) Production facilities for second-generation biofuels in the USA and the EU – current status and future perspectives. Biofuels Bioprod Biorefin 7:647–665

    Article  CAS  Google Scholar 

  • Jessup RW (2011) Development and status of dedicated energy crops in the United States. In: Tomes D, Lakshmanan P, Songstad D (eds) Biofuels. Global impact on renewable energy, production, agriculture, and technological achievements. Springer, New York, pp 97–112

    Google Scholar 

  • Jones MR, Singels A (2015) Analyzing yield trends in the South African sugar industry. Agric Syst 141:24–35

    Article  Google Scholar 

  • Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Junqueira TL, Chagas MF, Gouveia VLR, Rezende MC, Watanabe MD, Jesus CD, Cavalett O, Milanez AY, Bonomi A (2017) Techno-economic analysis and climate change impacts of sugarcane biorefineries considering different time horizons. Biotechnol Biofuels 10(50):1–12

    Google Scholar 

  • Kennedy AJ (2001) Genetic base broadening in the West Indies Sugarcane Breeding Programme by the incorporation of wild species. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. IPGRI/FAO/CABI, UK. pp 283–294

    Google Scholar 

  • Kennedy AJ (2005) Breeding improved cultivars for the Caribbean by utilization of total biomass production. In: Proceedings of 25th Congress International Society Sugarcane Technologists, Guatemala City, pp 491–499

    Google Scholar 

  • Kennedy AJ (2008) Prospects for combining high sucrose content with increased fiber to generate multi-purpose cane varieties. Conference of West Indies Sugar Technologists, Jamaica. http://www.jamaicasugar.org/wist/Proceedings/Prospects%20for%20combining%20high%20sucrose%20content.pdf

  • Kim M, Day FF (2010) Composition of sugarcane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-010-0812-8

  • Kim M, Day FF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol 38(7):803–807

    Google Scholar 

  • Kingsbury N (2009) Hybrid: the history and science of plant breeding. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kingston G (2003) Ratooning and ratoon management in overseas cane sugar industries. Final Report – SRDC Project BSS110. Bureau of Sugar Experiment Station, Queensland, Australia

    Google Scholar 

  • Knoll JE, Anderson WF, Richard EP Jr, Doran-Petersen J, Baldwin B, Hale AL, Viator RP (2013) Harvest date effects on biomass quality and ethanol yield of new energycane (Saccharum hyb.) genotypes in the Southeast USA. Biomater Bioenergy 56:147–156. https://doi.org/10.1016/j.biombioe.2013.04.018

    Article  CAS  Google Scholar 

  • Koller M, Salerno A, Reiterer A, Malli H, Kettl K-H, Naradoslawsky M, Schnitzer H, Chiellini E, Braunegg G (2012) Sugarcane as feedstock for bioremediated polymer production. In: Goncalves JF, Correia KD (eds) Sugarcane: production, cultivation and uses. Nova Publishers, New York, pp 105–136

    Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, New York

    Book  Google Scholar 

  • Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014, article ID 631013. https://doi.org/10.1155/2014/631013

  • Legendre BL, Burner DM (1995) Biomass production of sugarcane cultivars and early-generation hybrids. Biomater Bioenergy 8(2):55–61

    Article  Google Scholar 

  • Lengnick L (2015) Resilient agriculture. Cultivating food systems for a changing climate. New Society Publishers, Canada

    Google Scholar 

  • León RG, Gilbert RA, Korndorfer PH, Comstock JC (2010) Selection criteria and performance of energycane clones (Saccharum spp. x S. spontaneum) for biomass production under tropical and sub-tropical conditions. Ceiba 51:11–16

    Article  Google Scholar 

  • Levidow L, Paul H (2008) Land use, bioenergy, and agro-biotechnology. WGBU, Berlin

    Google Scholar 

  • Lingle SE, Johnson RM, Tew TL, Viator RP (2010) Changes in juice quality and sugarcane yield with recurrent selection for sucrose. Field Crops Res 118:152–57

    Google Scholar 

  • Lobell DB, Cassman K, Field C (2009) Crop yield gaps: their importance, magnitudes and causes. Ann Rev Environ Resour 34(1):179–204

    Google Scholar 

  • Lo CC, Chen YH, Huang YJ, Shih SC (1986) Recent progress in Miscanthus nobilization program. In: Proceedings of 19th Congress International Society Sugarcane Technologists, Jakarta, pp 514–521

    Google Scholar 

  • Long SP, Karp A, Buckeridge MS (2015) Feedstocks for biofuels and bioenergy. In: Souza GM, Victoria RL, Joly CA, Verdade LM (eds) Bioenergy and sustainability: bridging the gaps. SCOPE/72, pp 302–346. http://bioenfapesp.org/scopebioenergy/index.php

  • Loomis RS, Connor DJ (2003) Crop ecology: productivity and management in agricultural systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Lovins AB (2011) Reinventing fire: bold business solutions for the new energy era. Rocky Mountain Institute. Chelsea Green Publishing, Vermont

    Google Scholar 

  • Machado Junior GR, Matsuoka S, Raizer AJ, Landell MGA, Santos EGD, Simões Neto DE, Oliveira RA (2015) Melhoramento da cana-de-açúcar. In: Silva FC, Alves BJR, Freitas PL (eds) Sistema de produção mecanizada da cana-de-açúcar integrada à produção de energia e alimentos, vol 1. DF, EMBRAPA, Brasilia, pp 114–189. (in Portuguese)

    Google Scholar 

  • Manzatto CV, Assad ED, Bacca JFM, Zaroni MJ, Pereira SEM (Org) (2009) Zoneamento agroecológico da cana-de-açúcar. Embrapa Solos, Rio de Janeiro. (in Portuguese)

    Google Scholar 

  • Manzer LE (2013) The role of startup companies in the conversion of biomass to renewable fuels and chemicals. In: Behrem M, Datye AK (eds) Catalysis for the conversion of biomass and its derivatives. Max Planck Research Library for the history and development of knowledge, Proc 2. http://edition-open-access.de/proceedigs/2/

  • Mariotti JA (1974) The effect of environments on the effectiveness of clonal selection in sugarcane. In: Proceedings of 15th Congress of International Society of Sugarcane Technologists, Durban, pp 89–95

    Google Scholar 

  • Mariotti JA (1987) Selection for stability and adaptability. Copersucar International Sugarcane Breeding Workshop, Piracicaba-SP, Brazil, May-June. COPERSUCAR, São Paulo, pp 249–267

    Google Scholar 

  • Matsuoka S (2016) Resilience: short in sugarcane but plentiful in energy cane. In: Abstracts of the ASA-CSSA-SSSA International Annual Meeting, 6–9 Nov 2016, Phoenix. https://scisoc.confex.com/crops/2016am/webproram/Paper98944.html

  • Matsuoka S (2017) Free fiber level drives resilience and hybrid vigor in energy cane. J Sci Achiev 2(1):1–32

    Google Scholar 

  • Matsuoka S, Bressiani J, Maccjeroni W, Fouto I (2012) Sugarcane bioenergy. In Santos F, Borém A, Caldas C. Sugarcane: bioenergy, sugar and ethanol. Technology and prospects. MAPA/ACS: UFV/DEA, Brasilia, p. 471–500

    Google Scholar 

  • Matsuoka S, Garcia AAF (2011) Sugarcane underground organs: going deep for sustainable production. Trop Plant Biol 4:22–30

    Article  Google Scholar 

  • Matsuoka S, Stolf R (2012) Sugarcane tillering and ratooning: key factors for a profitable cropping. In: Goncalves JF, Correia KD (eds) Sugarcane: production, cultivation and uses. Nova Science Publishers, New York, pp 137–157

    Google Scholar 

  • Matsuoka S, Kennedy AJ, Santos EGD, Tomazela A, Rubio LC (2014) Energy cane: its concept, development, and prospects. Adv in Bot 2014, Article ID 597275. https://doi.org/10.1155/2014/59727

  • Milanez AY, Nyko D, Valente MS, Sousa LC, Bonomi A, Jesus CDF, Watanabe MDB, Chagas MF, Rezende MCAF, Cavalett O et al (2015) De promessa a realidade: como o etanol celulósico pode revolucionar a indústria de cana-de-açúcar. Uma avaliação do potencial competitivo e sugestões de política pública, Rio de Janeiro: BNDES Setorial, no. 41, pp 237–294. (in Portuguese)

    Google Scholar 

  • Miller JD, Tai PYP, Edme SJ, Comstock J, Glaz B, Gilbert R (2005) Basic germplasm utilization in the sugarcane development program at Canal Point, Florida, USA. Proc. In: Proceedings of 25th Congress International Society Sugarcane Technologists, Guatemala City, vol 2, pp 532–536

    Google Scholar 

  • Milligan SB, Gravois KA, Martin FA (1996) Inheritance of sugarcane ratooning ability and relationship of younger crop traits to older crop traits. Crop Sci 36:45–50

    Article  Google Scholar 

  • Ming R, Moore PH, Wu KK, D’Hont A, Tew TL, Mirkov A, da Silva JE, Schnell J, Brumblay SM, Lakshamanan P et al (2006) Sugarcane improvement through breeding and biotechnology. In: Janick J (ed) Plant Breed Rev, vol 27. Wiley, Hoboken, pp 15–118

    Google Scholar 

  • Miranda EE (2014) Environmental (local and global impact) and energy issues on sugarcane expansion and land occupation in the São Paulo State. In: Cortez LAB (Coord) Sugarcane bioethanol — R&D for productivity and sustainability. Blücher, São Paulo, pp 41–52

    Google Scholar 

  • Mirzawan PDN, Sugiyarta E (1999) Ratooning ability in sugarcane: direct vs. indirect selection based on clonal performance in younger crops. In: Proceedings of 23th Congress International Society Sugarcane Technologists, New Delhi, pp 467–475

    Google Scholar 

  • Monteiro LA, Sentelhas PC (2017) Sugarcane yield gap: can it be determined at national level with a simple agrometeorological model? Crop Pasture Sci 68:271–284

    Article  Google Scholar 

  • Moore PH (1987) Breeding for stress resistance. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 503–542

    Chapter  Google Scholar 

  • Moore PH (2005) Integration of sucrose accumulation process across hierarchical scales: towards developing an understanding of the gene-to-crop continuum. Field Crops Res 92:119–135

    Article  Google Scholar 

  • Moore PH, Paterson AH, Tew TL (2014) Sugarcane: the crop, the plant, and domestication. In: Moore PH, Botha FC (eds) Sugarcane. Physiology, biochemistry, and functional biology. Wiley-Blackwell, Ames, pp 1–17

    Google Scholar 

  • Mueller CC, Martha GB Jr (2011) The expansion of ethanol and land use in Brazil’s cerrado. In: Amann E, Baer W, Coes DV (eds) Energy, bio fuels and development. Routledge, London, pp 268–291

    Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankurty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257

    Article  CAS  PubMed  Google Scholar 

  • Muktham R, Bhargava SK, Bamkupalli S, Ball AS (2016) A review on 1st and 2nd generation bioethanol production – recent progress. J Sust Syst 6:72–92

    CAS  Google Scholar 

  • Mulinari DR, Capri MR, Maia TF (2012) Use of the sugarcane bagasse in thermoplastic and thermosetting composites. In: Goncalves JF, Correia KD (eds) Sugarcane: production, cultivation and uses. Nova Publishers, New York, pp 187–214

    Google Scholar 

  • Murray SC (2013) Differentiation of seed, sugar and biomass-producing genotypes in Saccharinae species. In: Paterson AH (ed) Genomics of saccharine. Springer, New York, pp 479–502

    Chapter  Google Scholar 

  • Nassar AM, Rudorff BFT, Antoniazzi LB, Aguiar DA, Bacchi MRP, Adann M (2008) Prospects of the sugarcane expansion in Brazil: impacts on direct and indirect land use changes. In: Zuurbier P, van de Vooren J (eds) Sugarcane ethanol. Wageningen Academic Publishers, Wageningen, pp 63–93

    Google Scholar 

  • Nelson PN, Ham GJ (2000) Exploring the response of sugarcane to sodic and saline conditions through natural variation in the field. Field Crops Res 66:245–225

    Article  Google Scholar 

  • Neves MF, Pinto MJA, Conejero MA, Trombim VG (2011) Food and fuel: the example of Brazil. Wageningen Academic Publishers, Wageningen

    Book  Google Scholar 

  • O’Hara IM, Zhang Z, Rackemann DW, Dunn KG, Hobson PA, Doherty WOS (2013) Prospects for the development of sugarcane biorefineries. In: Proceedings of 28th Congress International Society Sugarcane Technologists, São Paulo. https://eprints.qut.edu.au/70882/2/70889.pdf

  • OECD (2014) Biobased chemicals and bioplastics: finding the right policy balance, OECD Science, Technology and Industry Policy Papers, No. 17, OECD Publishing. https://doi.org/10.1787/5jxwwfjx0djf-en

  • OECD-FAO (2015) Brazilian agriculture: prospect and challenges. OECD-FAO Agricultural Outlook 2015. https://doi.org/10.1787/agroutlook-2015-en. Accessed 29 Jan 2016

  • Ogata BH (2013) Caracterização das frações celulose, hemicelulose e lignina de diferentes genótipos de cana-de-açúcar e potencial de uso em biorefinarias. MSc Diss, Escola Superior de Agricultura “Luiz de Queiróz”, USP, Piracicaba

    Google Scholar 

  • Panje RR (1972) The role of Saccharum spontaneum in sugarcane breeding. In: Proceedings of 14th Congress International Society Sugarcane Technologists, Baton Rouge, pp 217–223

    Google Scholar 

  • Paterson AH (2009) Rhizomatouness: genes important for a weediness syndrome. In: Steward C Jr (ed) Weeding and invasive plant genomes. Wiley, Ames, pp 99–109

    Chapter  Google Scholar 

  • Paterson AH, Moore PH, Tew TL (2013) The gene pool of Saccharum species and their improvement. In: Paterson AH (ed) Genomics of saccharine. Springer, New York, pp 43–71

    Chapter  Google Scholar 

  • Perlack RD, Wright L, Turhollow AF, Grahan RL, Stokes BJ, Foley JA (2005) Biomasses feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory Report ORNL/TM-2005/66, US Department of Energy, Oak Ridge

    Google Scholar 

  • Piperidis G, Piperidis N, D’Hont A (2010) Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Gen Genomics 284:65–73

    Article  CAS  Google Scholar 

  • Ponragdee W, Ohara S, Sansayawichai S, Terajima Y, Tipayawatt A, Ando S, Tarumoto Y, Sugimoto A (2013) New type of high yielding sugarcane with lower sugar and higher fibre content suitable for stable co-production of sugar and ethanol for Northeast Thailand. In: Proceedings of 28th Congress International Society Sugarcane Technologists, São Paulo, pp 719–730

    Google Scholar 

  • Ramdoyal K, Badaloo MGH (2007) An evaluation of interspecific families of different mobilized group in contrasting environments for breeding novel sugarcane clones for biomass. In: Proceedings of 26th Congress International Society Sugarcane Technologists, Durban, pp 632–645

    Google Scholar 

  • Ramos CS (2017) Usina Bom Retiro será reaberta após dois anos parada. Valor Econômico. www.valor.com.br/empresas/4908868/usina-bom-retiro-sera-reaberta-apos-dois-anos-parada. Accessed 20 Jan 2018

  • Rao MS, Weerathaworn P (2009) Diversification of breeding program to develop multipurpose sugarcane cultivars. Sugar Tech 11:77–79

    Article  Google Scholar 

  • Rein PW (2007) Prospects for the conversion of a sugar mill into a biorefinery. In: Proceedings of 26th Congress International Society Sugarcane Technologists, Durban, pp 44–60

    Google Scholar 

  • REN21 (2017) Renewables global futures report: great debates towards 100% renewable energy. REN21 Secretariat, Paris. ISBN 978-3-9818107-4-5. www.ren21.net/wp-content/uploads/2017/03/GFR-Full-Report-2017.pdf. Accessed 20 Jan 2018

  • Roach BT (1969) Quantitative effects of hybridization in Saccharum officinarum x Saccharum spontaneum crosses. In: Proceedings of 13th Congress International Society Sugarcane Technologists, Havana, pp 939–954

    Google Scholar 

  • Roach BT (1972) Nobilization of sugarcane. In: Proceedings of 14th Congress International Society Sugarcane Technologists, Baton Rouge, pp 206–216

    Google Scholar 

  • Roach BT, Daniels J (1987) A review of the origin and improvement of sugarcane. International Sugarcane Breeding Workshop, Piracicaba. Copersucar, São Paulo, pp 1–31

    Google Scholar 

  • Rodolfo K (2017) What is homeostasis? Scientific American. www.scientificamerican.com/article/what-is-homeostasis. Accessed 21 Mar 2018

  • Rosillo-Calle F (2010) Food versus fuel: can we avoid the conflict? In: Cortez LAB (Coord) Sugarcane bioethanol – R and D for productivity and sustainability. Blucher, São Paulo, pp 101–114

    Google Scholar 

  • Rutherford RS (2014) Mechanism of resistance to pest and pathogens in sugarcane and related crop species. In: Moore PH, Botha FC (eds) Sugarcane. Physiology, biochemistry, and functional biology. Wiley-Blackwell, Ames, pp 435–482

    Google Scholar 

  • Salassi ME, Breaux J (2002) Economically optimal crop cycle length for major sugarcane varieties in Louisiana. J Am Soc Sugarcane Technol 22:53–58

    Google Scholar 

  • Salassi ME, Falconer LL, Mark TB, Deliberto MA, Hilburn BM, Cooper TL (2015) Economic potential for energy cane production as cellulosic biofuel feedstock in the Southeastern United States. AIMS Energy 3:25–40

    Article  Google Scholar 

  • Samuels G, Alexander AG, Rios C, Garcia M (1984) The production of energy cane in Puerto Rico: the Hatillo project. J Am Soc Sugarcane Technol 3:14–17

    Google Scholar 

  • Sandhu HS, Gilbert RA (2017) Production of biofuel crops in Florida: Sugarcane/energycane. http://edis.ifas.ufl.edu/ag303. Accessed 10 Jun 2019

  • Santanna C, Costa LT, Abud Y, Biancato L, Miguens FC, Souza W (2013) Sugarcane cell wall structure and lignin distribution investigated by confocal and electron microscopy. Microsc Res Tech 76:829–834

    Article  CAS  Google Scholar 

  • Santchurn D, Ramdoyal K, Badaloo MGH, Labuschagne M (2014) From sugar industry to cane industry: investigations on multivariate data analysis techniques in the identification of different high biomass sugarcane cultivars. Biomater Bioenergy 61:82–92

    Article  Google Scholar 

  • Santos LV, Grassi MCB, Gallardo JCM, Pirolla RA, Calderón LL, de Carvalho-Netto OV, Parreiras LS, Camargo EL, Drezza AL, Missawa SK, Teixeira GS (2016) Second-generation ethanol: the need is becoming reality. Ind Biotechnol 12(1):40–57. https://doi.org/10.1089/ind.2015.0017

  • Schell C, Riley C, Petersen GR (2008) Pathways for development of a biorenewables industry. Bioresour Technol 99:5160–5164

    Article  CAS  PubMed  Google Scholar 

  • Seabra JEA, Macedo IC (2014) Technology options for the future sugarcane biorefineries. In: Cortez LAB (Coord) Sugarcane bioethanol — R&D for productivity and sustainability. Blücher, São Paulo, pp 773–784

    Google Scholar 

  • Seebaluck V, Leal MRLV (2015) Feedstock supply chains. In: Souza GM, Victoria RL, Joly CA, Verdade LM (eds) Bioenergy and sustainability: bridging the gaps. SCOPE/72, pp 349–367. http://bioenfapesp.org/scopebioenergy/index.php

  • Sehtiya HL, Mehla AS (2012) Studies on the relationship of juice quality with root growth pattern in sugarcane. J Sugarcane Res 2:50–53

    Google Scholar 

  • Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaran N, Koundal KR, Mohapatra T (2005) Genomic constitution and genetic relationship among the tropical and subtropical Indian sugarcane cultivars revealed by AFLP. Crop Sci 45:1750–1757

    Article  CAS  Google Scholar 

  • Silveira LCI, Brasileiro BP, Kist V, Weber H, Daros E, Peternelli LA, Barbos MHP (2016) Selection in energy cane families. Crop Breed Appl Biotechnol 16(4):298–306. https://doi.org/10.1590/1984-7032016v16n4a45

    Article  Google Scholar 

  • Singh BP (2013) Biofuel crop sustainability paradigm. In: Singh BP (ed) Biofuel crop sustainability. Willey-Blackwell, Oxford, pp 3–30

    Chapter  Google Scholar 

  • Skinner JC, Hogarth DM, Wu KK (1987) Selection methods, criteria, and indices. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 409–453

    Chapter  Google Scholar 

  • Somerville C, Young H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792

    Google Scholar 

  • Souza AP, Grandis A, Leite DCC, Buckeridge MS (2013) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenergy Res 6:1–14

    Article  CAS  Google Scholar 

  • Souza GM, Victoria R, Verdade LM, Joly CA, Artaxo Netto PE, Canatarella H, Chum HL, Diaz-Chavez R, Fernandes E, Fincher G et al (2015) Bioenergy numbers. In: Souza GM, Victoria RL, Joly CA, Verdade LM (eds) Bioenergy and sustainability: bridging the gaps. SCOPE/72, São Paulo/Paris, pp 29–57. http://bioenfapesp.org/scopebioenergy. Accessed 22 Jan 2018

  • Stevenson GC (1965) Genetics and breeding of sugarcane. Longmans, London

    Google Scholar 

  • Stitt M (2013) Plant growth: basic principles and issues relating to the optimization of biomass production and composition as a feedstock for energy. In: Behrens M, Abhaya D (eds) Heterogeneous catalysis to the conversion of biomass and its derivatives. Max Planck Research Library for the History and Development of Knowledge Proc 2, Berlin, pp 83–129

    Google Scholar 

  • Strapasson AB (2014) The limits of bioenergy: a complex systems approach to land use dynamics and constraints. PhD Thesis, Imperial College London, United Kingdom. http://hdl.handle.net/10044/1/19269

  • Sukarso G, Mirzawan PDN (2005) World germplasm repository of Saccharum species. In: Solomon S, Grewal SS, Li Y-R et al (eds) Sugarcane: production management and agro-industrial imperatives. International Book Distributing Co., Lucknow, pp 465–484

    Google Scholar 

  • Tai PYP, He H, Gan H, Miller JD (1992) Variation for juice quality and fiber content in crosses between commercial sugarcane and S. spontaneum. J Am Soc Sugarcane Technol 12:47–57

    Google Scholar 

  • Tammisola J (2010) Towards much more efficient biofuel crops: can sugarcane pave the way? GM Crops 1:181–198

    Article  PubMed  Google Scholar 

  • Terajima Y, Sugimoto A, Fukuhara S, Ujihara K, Matsuoka M, Irei S (2005) The feature of root growth and activity of a high yielding interspecific hybrid between Saccharum hybrid and S. spontaneum L. In: Proceedings of 25th Congress International Society Sugarcane Technologists, Guatemala City, vol 2, pp 255–258

    Google Scholar 

  • Terajima Y, Matsuoka M, Irei S, Sakaigaichi T, Fukuhara S, Ujihara K, Ohara S, Sugimoto A (2007) Breeding for high-biomass sugarcane and its utilisation in Japan. In: Proceedings of 26th Congress International Society Sugarcane Technologists, Durban, pp 759–763

    Google Scholar 

  • Tew TL, Cobill RM (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 249–272

    Google Scholar 

  • Thompson PB (2012) The agricultural ethics and biofuels: the food vs. fuel debate. Agriculture 2012(2):339–358. https://doi.org/10.3390/agriculture2040339

    Article  Google Scholar 

  • Tomei J, Helliwell R (2016) Food versus fuel? Going beyond biofuels. Land Use Policy 56:320–326

    Article  Google Scholar 

  • Tomes D, Lakshmanan P, Songstad D (eds) (2011) Biofuels: global impact on renewable energy, production agriculture, and technological advancements. Springer, New York

    Google Scholar 

  • Tonta JA, Smith LED (1996) Determination of optimum number of ratoons in sugarcane by the discounted cash flow technique. In: Proceedings of 22th Congress International Society Sugarcane Technologists, Cartagena, vol 2, pp 8–13

    Google Scholar 

  • Tripathi BK, Gill SS, Misra GP, Lal S (1992) Screening of sugarcane (Saccharum hybrids) genotypes for ratooning ability. Indian Sugar 32:577–581

    Google Scholar 

  • UNFCCC (2016) Report of the Conference of the Parties on its twenty-first section, Paris, Nov 30 to Dec 13, 2015. United Nations Framework Convention on Climate Change unfccc.int/resource/docs/2015/cop21/ing/10.pdf. Accessed 29 Jan 2016

    Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • van Ittersum MK, Cassman KG, Grassini P, Wolf J, Titonell P, Hochman Z (2013) Yield gap analysis with local to global relevance. A review. Field Crops Res 143:4–17

    Article  Google Scholar 

  • Vanholme B, Desmet T, Ronsse F, Rabaey K, van Breusegen F, De Mey M, Sotaert W, Boerjan W (2013) Towards a carbon-negative sustainable bio-based economy. Front Plant Sci 4, article174. https://doi.org/10.3389/fpls.2013.00174

  • Vassilev SV, Baxter D, Andersen LK, Vassilva CG, Morgan TJ (2011) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33

    Article  CAS  Google Scholar 

  • Vermerris W (2008) Why bioenergy makes sense. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 3–42

    Chapter  Google Scholar 

  • Viator R, White P, Richard E Jr (2010) Sustainability production of energycane for bio-energy in the Southeastern United States. In: Eggleston G (ed) Sustainability of the sugar and sugar-ethanol industries, ACS Symposium Series, vol 1058, pp 147–161

    Google Scholar 

  • Villela Filho M, Araujo C, Bonfá A, Porto W (2011) Chemistry based on renewable raw materials: perspectives for a sugarcane-based biorefinery. Enzyme Res 2011, article ID 654596:1–8. https://doi.org/10.4061/2022/654596

  • Voroney RP (2007) The soil habitat. In: Paul EA (ed) Soil microbiology. Ecology and biochemistry, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:263–276. https://doi.org/10.1111/j.1467-7652.2009.0049x

    Article  CAS  PubMed  Google Scholar 

  • Waisel Y, Eshel A, Kafkafi U (eds) (2002) Plant roots: the hidden half. CRC Press, Boca Raton

    Google Scholar 

  • Walker DIT (1987) Manipulating the genetic base of sugarcane. In: Copersucar International Sugarcane Breeding Workshop, Piracicaba. Copersucar, São Paulo, pp 321–334

    Google Scholar 

  • Wang L-P, Jackson PA, Lu XL, Fan YH, Foreman JW, Chen Y-K, Deng H-H, Fu C, Ma L, Aitken KS (2008) Evaluation of sugarcane x S. spontaneum progeny for biomass composition and yield components. Crop Sci 48:951–961

    Article  Google Scholar 

  • Warp JP, Sandhu H (2017) Discovering the desirable alleles contributing to the lignocellulosic biomass traits in Saccharum germplasm collections for energy cane improvement. University of Florida, Technical Report/DOE/USA, 28p. https://doi.org/10.2172/1347688. Accessed 23 Jan 2018

  • Warschefsky E, Penmetsa RV, Cook DR, von Wettburg EJB (2014) Back to the wilds: tapping evolutionary adaptation for resilient crops through systematic hybridization with crop wild relatives. Am J Bot 101:1791–1800

    Article  PubMed  Google Scholar 

  • White WH, Tew TL, Cobill RM, Burner DM, Grishan MP, Dufrene EO, Pan Y-B, Richard EP Jr, Legendre B (2011) Registration of ‘Ho 00-961’ sugarcane. J Plant Regist 5(3):332–338

    Article  Google Scholar 

  • Woods J, Lynd LR, Laser M, Batistella M, Victoria DC, Kline K, Faaj A (2015) Land and bioenergy. In: Souza GM, Victoria RL, Joly CA, Verdade LM (eds) Bioenergy and sustainability: bridging the gaps. SCOPE/72, São Paulo/Paris, pp 258–300. http://bioenfapesp.org/scopebioenergy

  • Wrangham R (2009) Catching fire. How cooking made us humans. Basic Books, New York

    Google Scholar 

  • Zegada-Lizarazu W, Parrish D, Berti M, Monti A (2013) Dedicated crops for advanced biofuels: consistent and diverging agronomic points of view between the USA and the EU-27. Biofuels Bioprod Biorefin 7:715–731

    Article  CAS  Google Scholar 

  • Zhou M (2013) Conventional sugarcane breeding in South Africa: Progress and future prospects. Am J Pl Sci 4:189–190

    Google Scholar 

  • Zuurbier P, van de Vooren J (eds) (2008) Sugarcane ethanol: contributions to climate change m and the environment. Wageningen Academic Publishers, Wageningen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sizuo Matsuoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsuoka, S., Rubio, L.C.S. (2019). Energy Cane: A Sound Alternative of a Bioenergy Crop for Tropics and Subtropics. In: Khan, M., Khan, I. (eds) Sugarcane Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-030-18597-8_3

Download citation

Publish with us

Policies and ethics