Skip to main content

Challenges, Constraints, and Limitations of Cane Biofuels

  • Chapter
  • First Online:
Sugarcane Biofuels

Abstract

Sugarcane (Saccharum officinarum L.) is the main source of sugar in the world, and its ability to produce large amounts of biomass makes this species extremely attractive in a biomass-dependent economy. Leveraged by the oil crisis and by environmental pressure to mitigate the climate change impacts, bioethanol (BE) emerged as a cleaner alternative liquid fuel for internal combustion engines (ICEs). The BE is usually produced via fermentation of sugars, extracted directly from sugarcane sucrose or from preprocessed starch-rich cereals, such as maize, wheat, or rice. Although sugarcane features higher BE yield (L ha−1) and as a promising alternative to mitigate the climate change impacts, its production is posed to a series of challenges and limitations ranging from climate restrictions, land availability, logistics infrastructure, and competitive price. Sugarcane is a perennial grass adapted to tropical and subtropical climates, sensitive to frosts and water shortages, limiting its cultivation in between ±30° latitudes. Yet, in places where the production could be expanded, it is usual to verify the lack of infrastructure for industrial establishment and for rapidly and effectively transporting large amounts of biomass to mills. While the slow progress of second-generation BE is still a constraint, the establishment of electric vehicles in the coming decade can reduce the BE demand. In this scenario, the sugarcane BE industry would have the challenge to share the remained BE market, with other consolidated and new feedstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sustain Energy Rev 66(1):631–653

    Article  CAS  Google Scholar 

  • Aguilar-Rivera N, Rodríguez LDA, Enríquez RV, Castillo MA, Herrera SA (2012) The Mexican sugarcane industry: overview, constraints, current status and long-term trends. Sugar Tech 14(3):207–222

    Article  CAS  Google Scholar 

  • Alexandrov VA, Hoogenboom G (2000) Vulnerability and adaptation assessments of agricultural crops under climate change in the Southeastern USA. Theor Appl Climatol 67(1):45–63

    Article  Google Scholar 

  • Associação Nacional dos Fabricantes de Veículos Automotores (2018) Anuário Estatístico. ANFAVEA, Brasilia.

    Google Scholar 

  • Bae C, Kim J (2017) Alternative fuels for internal combustion engines. Proc Combust Inst 36(3):3389–3413

    Article  CAS  Google Scholar 

  • Barbosa CMG, Terra-Filho M, de Albuquerque ALP et al (2012) Burnt sugarcane harvesting – cardiovascular effects on a group of healthy workers, Brazil. PLoS One 7(1):e46142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggs JS, Thorburn PJ, Crimp S et al (2013) Interactions between climate change and sugarcane management systems for improving water quality leaving farms in the Mackay Whitsunday region, Australia. Agric Ecosyst Environ 180(1):79–89

    Article  CAS  Google Scholar 

  • Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci 107(26):12052–12057

    Article  CAS  PubMed  Google Scholar 

  • Caldarelli CE, Gilio L (2018) Expansion of the sugarcane industry and its effects on land use in São Paulo: analysis from 2000 through 2015. Land Use Policy 76:264–274

    Article  Google Scholar 

  • Carpio LGT, Simone de Souza F (2017) Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: scenarios of cost reductions. Renew Energy 111:771–780

    Article  CAS  Google Scholar 

  • Chum HL, Warner E, Seabra JEA, Macedo IC (2014) A comparison of commercial ethanol production systems from Brazilian sugarcane and US corn. Biofuels Bioprod Biorefin 8(2):205–223

    Article  CAS  Google Scholar 

  • Cortes-Rodríguez EF, Fukushima NA, Palacios-Bereche R et al (2018) Vinasse concentration and juice evaporation system integrated to the conventional ethanol production process from sugarcane-Heat integration and impacts in cogeneration system. Renew Energy 115:474–488

    Article  Google Scholar 

  • Crago CL, Khanna M, Barton J et al (2010) Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol. Energy Policy 38(11):7404–7415

    Article  Google Scholar 

  • da Costa CC, Guilhoto JJM, de Moraes MAFD (2013) Impactos sociais do aumento de demanda de etanol hidratado versus gasolina C na economia brasileira. In: Encontro da Sociedade Brasileira de Economia Ecológica, 9; Encontro Nacional da ECOECO, 9, 2011, Brasília, DF. Anais. Políticas públicas e a perspectiva da economia ecológica. ECOECO, Brasília, DF 2011. não paginado

    Google Scholar 

  • De Oliveira F, Coelho S (2018) Biodiesel in Brazil should take off with the newly introduced domestic biofuels policy: RenovaBio. In: Biodiesel and biofuels. IntechOpen, London, pp 1–13

    Google Scholar 

  • de Moraes MAFD, Zilberman D (2014) Production of ethanol from sugarcane in Brazil: from state intervention to a free market. Springer Science & Business Media, Cham, p 217

    Book  Google Scholar 

  • Dias De Oliveira ME, Vaughan BE, Rykiel EJ (2005) Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience 55(7):593–602

    Article  Google Scholar 

  • Food and Agriculture Organization Statistics (2018). http://www.fao.org/faostat/en/#data. Accessed 1 July 2018

  • Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238

    Article  CAS  PubMed  Google Scholar 

  • Filoso S, do Carmo JB, Mardegan SF et al (2015) Reassessing the environmental impacts of sugarcane ethanol production in Brazil to help meet sustainability goals. Renew Sustain Energy Rev 52:1847–1856

    Article  Google Scholar 

  • Garcia-Valle R, Peças Lopes JA (2012) Electric vehicle integration into modern power networks. Springer Science & Business Media, New York, p 321

    Google Scholar 

  • Ge J, Lei Y, Tokunaga S (2014) Non-grain fuel ethanol expansion and its effects on food security: a computable general equilibrium analysis for China. Energy 65:346–356

    Article  Google Scholar 

  • Gilio L, de Moraes MAFD (2016) Sugarcane industry’s socioeconomic impact in São Paulo, Brazil: a spatial dynamic panel approach. Energy Econ 58:27–37

    Article  Google Scholar 

  • Goettemoeller J, Goettemoeller A (2007) Sustainable ethanol: biofuels, biorefineries, cellulosic biomass, flex-fuel vehicles, and sustainable farming for energy independence. Prairie Oak Publishing, Michigan, p 195

    Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315(5813):808–810

    Article  CAS  PubMed  Google Scholar 

  • Goldemberg J (2013) Sugarcane ethanol: strategies to a successful program in Brazil. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 13–20

    Chapter  Google Scholar 

  • Goldemberg J, Mello FFC, Cerri CEP, Davies CA, Cerri CC (2014) Meeting the global demand for biofuels in 2021 through sustainable land use change policy. Energy Policy 69:14–18

    Article  Google Scholar 

  • Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renew Sustain Energy Rev 42:712–725

    Article  CAS  Google Scholar 

  • Haberl H, Erb K-H, Krausmann F, Running S, Searchinger TD, Smith WK (2013) Bioenergy: how much can we expect for 2050? Environ Res Lett 8:031004

    Article  Google Scholar 

  • Hamilton JD (2008) Understanding crude oil prices. National Bureau of Economic Research, Cambridge, p 42

    Book  Google Scholar 

  • Hannan MA, Azidin FA, Mohamed A (2014) Hybrid electric vehicles and their challenges: a review. Renew Sustain Energy Rev 29:135–150

    Article  Google Scholar 

  • Hess TM, Sumberg J, Biggs T et al (2016) A sweet deal? Sugarcane, water and agricultural transformation in Sub-Saharan Africa. Glob Environ Chang 39:181–194

    Article  Google Scholar 

  • Hira A, de Oliveira LG (2009) No substitute for oil? How Brazil developed its ethanol industry. Energy Policy 37:2450–2456

    Article  Google Scholar 

  • Hoekman SK (2009) Biofuels in the US--challenges and opportunities. Renew Energy 34:14–22

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (2014) Climate change 2013: the physical science basis: Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge

    Google Scholar 

  • International Energy Agency (2016) Medium-term renewable energy market report 2016. New York

    Google Scholar 

  • International Energy Agency (2017) Global EV Outlook 2017: two million and counting. New York

    Google Scholar 

  • Jaiswal D, De Souza AP, Larsen S, LeBauer DS, Miguez FE, Sparovek G, Bollero G, Buckeridge MS, Long SP (2017) Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat Clim Chang 7(11):788

    Article  Google Scholar 

  • Jambo SA, Abdulla R, Mohd Azhar SH, Marbawi H, Gansau JA, Ravindra P (2016) A review on third generation bioethanol feedstock. Renew Sustain Energy Rev 65:756–769

    Article  CAS  Google Scholar 

  • Khan MT, Seema N, Khan IA, Yasmine S (2017) Applications and potential of sugarcane as an energy crop. In: Agricultural research updates, vol 16. Nova Science Publishers, New York, pp 1–24

    Google Scholar 

  • Knox JW, Rodríguez Díaz JA, Nixon DJ, Mkhwanazi M (2010) A preliminary assessment of climate change impacts on sugarcane in Swaziland. Agr Syst 103(2):63–72

    Article  Google Scholar 

  • Kromer MA, Heywood JB (2009) A comparative assessment of electric propulsion systems in the 2030 US light-duty vehicle fleet. SAE Int J Eng 1(1):372–391

    Article  Google Scholar 

  • Lamsal K, Jones PC, Thomas BW (2017) Sugarcane harvest logistics in Brazil. Transplant Sci 51(2):771–789

    Article  Google Scholar 

  • Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29(2):107–116

    Article  PubMed  Google Scholar 

  • Lepers E, Lambin EF, Janetos AC, DeFries R, Achard F, Ramankutty N, Scholes RJ (2005) A synthesis of information on rapid land-cover change for the period 1981–2000. Bioscience 55(2):115–124

    Article  Google Scholar 

  • Lobell DB, Cassman KG, Field CB (2009) Crop yield gaps: their importance, magnitudes, and causes. Annu Rev Env Resour 34:179–204

    Article  Google Scholar 

  • Marin FR, Jones JW, Singels A, Royce F, Assad ED, Pellegrino GQ, Justino F (2013) Climate change impacts on sugarcane attainable yield in southern Brazil. Clim Change 117(2):227–239

    Article  Google Scholar 

  • Marin FR, Martha GB Jr, Cassman KG, Grassini P (2016) Prospects for increasing sugarcane and bioethanol production on existing crop area in Brazil. Bioscience 66(4):307–316

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma S, Karkee M, Scharf PA, Zhang Q (2014) Sugarcane harvester technology: a critical overview. Appl Eng Agric 30(5):727–739

    Google Scholar 

  • Milanez AY, Nyko D, Valente MS et al (2015) De promessa a realidade: como o etanol celulósico pode revolucionar a indústria da cana-de-açúcar: uma avaliação do potencial competitivo e sugestões de política pública. BNDES Setorial, Rio de Janeiro 41:237–294

    Google Scholar 

  • Moore PH, Botha FC (2013) Sugarcane: physiology, biochemistry and functional biology. Wiley, Ames, p 750

    Book  Google Scholar 

  • Nakata K, Utsumi S, Ota A, Kawatake K, Kawai T, Tsunooka T (2006) The effect of ethanol fuel on a spark ignition engine. SAE technical paper. Toyota Motor Corporation, Warrendale.

    Google Scholar 

  • Nanaki EA, Xydis GA, Koroneos CJ (2016) Electric vehicle deployment in urban areas. Indoor Built Environ 25(7):1065–1074

    Article  Google Scholar 

  • Nykvist B, Nilsson M (2015) Rapidly falling costs of battery packs for electric vehicles. Nat Clim Chang 5(4):329

    Article  Google Scholar 

  • Ohlrogge J, Allen D, Berguson B et al (2009) Energy. Driving on biomass. Science 324(5930):1019–1020

    Article  CAS  PubMed  Google Scholar 

  • Paraiso ML de S, Gouveia N (2015) Health risks due to pre-harvesting sugarcane burning in São Paulo State, Brazil. Rev Bras Epidemiol 18:691–701

    Article  Google Scholar 

  • Renewable Fuels Association (2017) World fuel ethanol production of 2016. RFA, Washington DC

    Google Scholar 

  • Rocha FLR, Marziale MHP, Hong O-S (2010) Work and health conditions of sugar cane workers in Brazil. Rev Esc Enferm USP 44(4):978–983

    Article  PubMed  Google Scholar 

  • Rodríguez LA, Valencia JJ, Urbano JA (2012) Soil compaction and tires for harvesting and transporting sugarcane. J Terramech 49(4):183–189

    Article  Google Scholar 

  • Sage RF, Peixoto MM, Sage TL (2014) Photosynthesis in sugarcane. Sugarcane: physiology, biochemistry and functional biology, 1st edn. Wiley, New York, pp 121–149

    Google Scholar 

  • Scarpare FV, Hernandes TAD, Ruiz-Corrêa ST, Picoli MCA, Scanlon BR, Chagas MF, Duft DG, Cardoso TF (2016) Sugarcane land use and water resources assessment in the expansion area in Brazil. J Clean Prod 133:1318–1327

    Article  Google Scholar 

  • Scarpare FV, Leal M, Victoria RL (2015) Sugarcane ethanol in Brazil: challenges past, present and future. In: Bioenergy and Latin America: a multi-country perspective. Publications Office of the European Union, Ispra, pp 91–104

    Google Scholar 

  • Scheiterle L, Ulmer A, Birner R, Pyka A (2018) From commodity-based value chains to biomass-based value webs: the case of sugarcane in Brazil’s bioeconomy. J Clean Prod 172:3851–3863

    Article  Google Scholar 

  • Sengar K, Sengar R, Lal K, Rao V (2014) Climate change effect on sugarcane productivity. In: Sengar R, Sengar K (eds) Climate change effect on crop productivity. CRC Press, Boca Raton, pp 177–186

    Chapter  Google Scholar 

  • Singels A, Jones M, Marin F, Ruane A, Thorburn P (2014) Predicting climate change impacts on sugarcane production at sites in Australia, Brazil and South Africa using the canegro model. Sugar Tech 16(4):347–355

    Article  Google Scholar 

  • Singh J, Singh AK, Sharma MP, Singh PR, Srivastava AC (2011) Mechanization of sugarcane cultivation in India. Sugar Tech 13(4):310–314

    Article  CAS  Google Scholar 

  • Sissine F (2007). Energy independence and security act of 2007: a summary of major provisions. Library of Congress, Washington, DC, Congressional Research Service

    Google Scholar 

  • Sozinho DWF, Gallardo ALCF, Duarte CG, Ramos HR, Ruiz MS (2018) Towards strengthening sustainability instruments in the Brazilian sugarcane ethanol sector. J Clean Prod 182:437–454

    Article  Google Scholar 

  • Srivastava SP, Hancsók J (2014) Alternative fuels. In: Fuels and fuel-additives. Wiley, Hoboken, pp 121–176

    Chapter  Google Scholar 

  • Stocker TF (ed) (2014) Climate change 2013: the physical science basis: Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • van Ittersum MK, Cassman KG, Grassini P, Wolf J, Tittonell P, Hochman Z (2013) Yield gap analysis with local to global relevance—a review. Field Crop Res 143:4–17

    Article  Google Scholar 

  • Vermeulen SJ, Campbell BM, Ingram JSI (2012) Climate change and food systems. Annu Rev Env Resour 37:195–222

    Article  Google Scholar 

  • Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2(1):573–584

    Article  CAS  Google Scholar 

  • Walter A, Galdos MV, Scarpare FV, Leal MRLV, Seabra JEA, Cunha MP, Picoli MCA, Oliveira COF (2014) Brazilian sugarcane ethanol: developments so far and challenges for the future. WIREs Energy Environ 3(1):70–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding sources include Brazilian Research Council (CNPq grants 301424/2015-2, 401662/2016-0, and 425174/2018-2) and the Research Foundation of the State of São Paulo (FAPESP 2017/20925-0; 2017/50445-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio R. Marin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marin, F.R., Vianna, M.S., Nassif, D.S.P. (2019). Challenges, Constraints, and Limitations of Cane Biofuels. In: Khan, M., Khan, I. (eds) Sugarcane Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-030-18597-8_17

Download citation

Publish with us

Policies and ethics