Skip to main content

Source-Sink Relationship of Sugarcane Energy Production at the Sugar Mills

  • Chapter
  • First Online:
Sugarcane Biofuels

Abstract

Sugarcane (Saccharum officinarum L.) is an important source of sugar, biofuels and bioenergy, helping in meeting requirements of the world from food energy to fuel energy. This chapter covers, in brief, the sugar milling processes from sugarcane crushing to sugar manufacturing, by-products release, biofuels production, and bioelectricity cogeneration. Technological aspects of various forms of bioenergy production including bioethanol, electricity, and biogas, at the sugar industry, are detailed in this chapter. Industrial process and mechanism of molasses fermentation into bioethanol have been described; additionally, the chapter illustrates the approaches for second-generation ethanol production and pretreatment methods for the same. Moreover, the chapter also narrates cogeneration of electricity from sugarcane and cogeneration efficiency enhancement systems like Centrale Thermique de Belle Vue (CTBV) and condensation-extraction steam turbine (CEST). The use of other resources of sugarcane, viz., trash and straw, for obtaining the energy year-round has also been described. Finally, a brief on production of biogas from sugarcane pressmud, bagasse, and vinasse has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HMF:

5-Hydroxymethylfurfural

AFEX:

Ammonia fiber explosion

BIGCC:

Biomass integrated gasification combined cycle

BOD:

Biological oxygen demand

BPST:

Back pressure steam turbines

CBP:

Consolidated bioprocessing

CEST:

Condensation-extraction steam turbines

COD:

Chemical oxygen demand

CTBV:

Centrale Thermique de Belle Vue

DOE:

Department of Energy

DW:

Dry weight

FAO:

Food and Agriculture Organization

FFV:

Flex-fuel vehicles

GHV:

Gross heating value

HRSG:

Heat recovery steam generator

ISO:

International Sugar Organization

MTBE:

Methyl tertiary butyl ether

SHF:

Separate hydrolysis and fermentation

SSCF:

Simultaneous saccharification and cofermentation

SSF:

Simultaneous saccharification and fermentation

USDA:

United States Department of Agriculture

References

  • Abdalla AM, Hassan TH, Mansour ME (2018) Performance of wet and dry bagasse combustion in Assalaya sugar factory. Sudan Innov Ener Res 7:179–184. https://doi.org/10.4172/2576-1463.1000179

    Article  Google Scholar 

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang A (2016) Second generation bioethanol production: a critical review. Renew Sust Energy Rev 66:631–653

    Article  CAS  Google Scholar 

  • Aita G, Kim M (2011) Pretreatment technologies for the conversion of lignocellulosic materials to bioethanol. In: Sustainability of the sugar and sugar-ethanol industries. ACS Press, Oaklyn, pp 117–145. https://doi.org/10.1021/bk-2010-105

    Chapter  Google Scholar 

  • Aita GA, Salvi DA, Walker MS (2011) Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresour Technol 102(6):4444–4448

    Article  CAS  PubMed  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Antaresti YS, Setiyadi HW, Yogi YP (2002) The effect of chemical and biopulping process to bagasse pulp. In Proceeding: Symposium of Malaysian Chemical Engineers (SOMChE) and Regional Symposium on Chemical Engineering (RSCE), Petaling Jaya

    Google Scholar 

  • Aranda C, Robledo A, Loera O et al (2006) Fungal invertase expression in solid-state fermentation. Food Technol Biotechnol 44:229–233

    CAS  Google Scholar 

  • Ashokkumar B, Kayalvizhi N, Gunasekaran P (2001) Optamization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochem 37:331–338

    Article  CAS  Google Scholar 

  • Baez-Smith C (2006) Anaerobic digestion of vinasse for the production of methane in the sugarcane distillery. In: Proceeding SPRI conference on sugar processing, Aguas de São Pedro, 17–20 Sept 2016, p 268–287

    Google Scholar 

  • BNDES and CGEE (2008) Sugarcane-based bioethanol: energy for sustainable development, 1st edn. Banco Nacional de Desenvolvimento Econômico e Social and Centro de Gestão e Estudos Estratégicos, Rio de Janeiro, p 304

    Google Scholar 

  • Bangrak P, Limtong S, Phisalaphong M (2011) Continuous ethanol production using immobilized yeast cells entrapped in loofa-reinforced alginate carriers. Braz J Microbiol 41:676–684

    Article  CAS  Google Scholar 

  • Baral NR, Wituszynski DM, Martin J, Shah A (2017) Sustainability assessment of cellulosic biorefinery stillage utilization methods using energy analysis. Energy 109:13–28

    Article  Google Scholar 

  • Barriga A (2003) Energy system II. University of Calgary/OLADE, Quito

    Google Scholar 

  • Barros S, Berk C (2018) Brazil biofuels annual, Global Agricultural Information Network (GAIN) Report Number. BR18017, USDA Foreign Agricultural Service, Washington, DC. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Sao%20Paulo%20ATO_Brazil_8-10-2018.pdf. Accessed 11 Dec 2018

  • Behera S, Rama CM, Ramesh CR (2012) Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L sponge discs and Ca-alginate matrices. Braz J Microbiol 43(4):1499–1507. https://doi.org/10.1590/S1517–83822012000400034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezerra TL, Ragauskas AJ (2016) A review of sugarcane bagasse for second generation bioethanol and biopower production. Biofuels Bioprod Biorefin 10:634–647

    Article  CAS  Google Scholar 

  • Bleoanca I, Bahrim G (2013) Overview on brewing yeast stress factors. Rom Biotech Lett 18(5):8559–8572. https://www.rombio.eu/vol18nr5/1%20Bleoanca.pdf

    CAS  Google Scholar 

  • Bommarius AS, Katona A, Cheben SE et al (2008) Cellulose kinetics as a function of cellulose pretreatment. Metab Eng 10:370–381

    Article  CAS  PubMed  Google Scholar 

  • Boussarsar H, Roge B, Mathlouthi M (2009) Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresour Technol 100:6537–6542

    Article  CAS  PubMed  Google Scholar 

  • Bozzell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  • Brown RC (2005) Biomass refineries based on hybrid thermochemical-biological processing: an overview. In: Kamm B, Gruber VR, Kamm M (eds) Biorefineries industrial processes and products, vol 1. Wiley, Weinheim, pp 227–252

    Chapter  Google Scholar 

  • Brown D, Shi J, Li Y (2012) Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol 124:379–386. https://doi.org/10.1016/j.biortech.2012.08.051

    Article  CAS  PubMed  Google Scholar 

  • Bussamra BC, Freitas S, Da Costa A (2015) Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail. Bioresour Technol 187:173–181

    Article  CAS  PubMed  Google Scholar 

  • Cai CM, Zhang T, Kumar R, Wyman CE (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89(1):2–10

    Article  CAS  Google Scholar 

  • Canilha L, Chandel AK, Milessi S, Antunes FAF, Freitas L, Das Gracas AF, Da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:989572. https://doi.org/10.1155/2012/989572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao S, Aita G (2013) Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse. Bioresour Technol 131:357–364

    Article  CAS  PubMed  Google Scholar 

  • Carmo MJ, Gubulin JC (1997) Ethanol-water adsorption on commercial 3A zeolites: kinetic and thermodynamic data. Braz J Chem Eng 14(3). https://doi.org/10.1590/S0104-66321997000300004

  • Cazetta ML, Celligoi MAPC, Buzato JB, Scarmino IS (2007) Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour Technol 98:2824–2828

    Article  CAS  PubMed  Google Scholar 

  • Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18(4):295–331

    Article  CAS  PubMed  Google Scholar 

  • Charles M, Shuichi F (2003) Electricity from bagasse in Zimbabwe. Biomass Bioenergy 25:197–207

    Article  Google Scholar 

  • Cheng K, Zhang J, Ping W, Ge J, Zhou Y, Ling H, Xu M (2008) Sugarcane bagasse mild alkaline/oxidative pretreatment for ethanol production by alkaline recycle process. Appl Biochem Biotechnol 151:43–50

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239

    Article  CAS  PubMed  Google Scholar 

  • Colombo G, Ocampo-Duque W, Rinaldi F (2014) Challenges in bioenergy production from sugarcane mills in developing countries: a case study. Energies 7:5874–5898. https://doi.org/10.3390/en7095874

    Article  Google Scholar 

  • Daud S, Salleh SS, Salleh MN, Kasim FH, Saad SA (2007) Analysis of chemical composition in sugarcane bagasse and rice straw for their suitability using in paper production. In: Proceedings of 1st international conference on sustainable materials engineering (ICoSM), Penang, 9–11 June 2007, p 291–292

    Google Scholar 

  • De Rosa J, Salvadori M (2007) Advantages and challenges of cogeneration. Frost and Sullivan Market Insight. http://www.frost.com/prod/servlet/market-insight-print.pag?docid=110279425. Accessed 22 Nov 2018

  • de Souza SNM, Santos RF, Fracaro GPM (2011) Potential for the production of biogas in alcohol and sugarcane plants for use in urban buses in the Brazil. In: Proceeding World Renewable Energy Congress (Bioenergy Technol), Linkoping, 8–13 May 2011, p 418–424

    Google Scholar 

  • Deepchand K (2005) Sugarcane bagasse energy cogeneration: lessons from Mauritius. Paper presented to the parliamentarian forum on energy legislation and sustainable development, Cape Town, 5–7 October 2005

    Google Scholar 

  • Deng F, Aita G (2018) Detoxification of dilute ammonia pretreated energy cane bagasse enzymatic hydrolysate by soluble polyelectrolyte floccculants. Ind Crop Prod 112:681–690

    Article  CAS  Google Scholar 

  • Deng F, Cheong D, Aita G (2018) Optimization of activated carbon detoxification of dilute ammonia pretreated energy cane bagasse enzymatic hydrolysate by response surface methodology. Ind Crop Prod 115:166–173

    Article  CAS  Google Scholar 

  • Deshmukh R, Jacobson A, Chamberlin C, Kammen D (2013) Thermal gasification or direct combustion: comparison of advanced cogeneration systems in the sugarcane industry. Biomass Bioenergy 55:163–174

    Article  CAS  Google Scholar 

  • Dias MOS, Junqueira TL, Cavalett O et al (2013) Cogeneration in integrated first and second generation ethanol from sugarcane. Chem Eng Res Des 91:1411–1417

    Article  CAS  Google Scholar 

  • Díaz JC, Gil-Chávez ID, Giraldo L, Moreno-Piraján JC (2010) Separation of ethanol-water mixture using type-A zeolite molecular sieve. J Chem 7:483–495

    Google Scholar 

  • Dwivedi P, Alavalapati J, Lal P (2009) Cellulosic ethanol production in the United States: conversion technologies, current produciton status, economics, and emerging developments. Energy Sustain Dev 13:174–182

    Article  CAS  Google Scholar 

  • Ensinas AV, Nebra SA, Lozano MA, Serra L (2006) Analysis of cogeneration systems in sugar cane factories: alternatives of steam and combined cycle power plants. In: Proceedings of the ECOS, Aghia Pelagia, 12–14 July 2006, p 1177–1184

    Google Scholar 

  • Eshore S, Mondal C, Das A (2017) Production of biogas from treated sugarcane bagasse. Int J Eng Sci Technol 6:224–227. https://doi.org/10.5958/2277-1581.2017.00025.0

    Article  CAS  Google Scholar 

  • Espinoza-Acosta JL, Torres-Chávez PI, Ramírez-Wong B, López-Saiz CM, Montaño-Leyva B (2016) Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. Bioresources 11(2):5452–5481

    Article  Google Scholar 

  • Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol 59:129–136

    Article  CAS  Google Scholar 

  • Faria KCP (2011) Master thesis, UENF-LAMAV, Campos dos Goytaczes-RJ, Brazil

    Google Scholar 

  • Farzad S, Mandegari M, Gorgens J (2016) A critical review on biomass gasification, co-gasification and their environmental assessments. Biofuel Res J 12:483–495

    Article  Google Scholar 

  • Fatma S, Hameed A, Noman M, Ahmed T, Shahid M, Tariq M, Sohail I, Tabassum R (2018) Lignocellulosic biomass: a sustainable bioenergy source for the future. Protein Pept Lett 25:1–16

    Article  CAS  Google Scholar 

  • Ferreira V, de Oliveira FM, da Silva MS, Pereira JN (2010) Simultaneous saccharification and fermentation process of different cellulosic substrates using a recombinant Saccharomyces cerevisiae harboring the B-glucosidase gene. Electron J Biotechnol 13:2

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization Statistics (2017) Crop production: Sugarcane. http://www.fao.org/faostat/. Accessed 12 Jul 2018

  • Galvao ACF, Poppe MK, Rocha BB, Durieux L, Nogueira LAH, Macedo IC (2016) Second generation sugarcane bioenergy and biochemicals: advanced low-carbon fuels for transport and industry. Center for Strategic Studies and Management (CGEE), Brasília, p 103

    Google Scholar 

  • Gasmalla MAA, Yang R, Nikoo M, Man S (2012) Production of ethanol from sudanese sugar cane molasses and evaluation of its quality. J Food Process Technol 3:163. https://doi.org/10.4172/2157-7110.1000163

    Article  CAS  Google Scholar 

  • Gould JM (1985) Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotech Bioenergy 27:225–231. https://doi.org/10.1002/bit.260270303

    Article  CAS  Google Scholar 

  • Guan Y, Luo S, Liu S, Xiao B, Cai L (2009) Steam catalytic gasification of municipal solid waste for producing tar-free fuel gas. Int J Hydrog Energy 34(23):9341–9346. https://doi.org/10.1016/j.ijhydene.2009.09.050

    Article  CAS  Google Scholar 

  • Guilherme AA, Dantas PVF, Santos ES, Fernandes FA, Macedo GR (2015) Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Braz J Chem Eng 32:23–33. https://doi.org/10.1590/0104-6632.20150321s00003146

    Article  CAS  Google Scholar 

  • Hadiyarto A, Sumardiono S, Budiyono B, Fofana FF, Fauzi I (2017) The effect of solid-state anaerobic digestion (SS-AD) and liquid anaerobic digestion (L-AD) method in biogas production of rice husk. Waste Technol 1(1):1–5. https://doi.org/10.12777/wastech.5.2.2017.1-15

    Article  Google Scholar 

  • Haelssig JB, Tremblay AY, Thibault J (2012) A new hybrid membrane separation process for enhanced ethanol recovery: process description and numerical studies. Chem Eng Sci 68:492–505

    Article  CAS  Google Scholar 

  • Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund M (2007) Towards industrial pentose-fermenting yeast strains. Appl Environ Microbiol 74:5031–5037

    Google Scholar 

  • Hamelinck C, Hooijdonk G, Faaij A (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  • Hassuani SJ, Leal MRLV, Macedo IC (eds) (2005) Biomass power generation: sugar cane bagasse and trash, 1st edn. PNUD – CTC, Piracicaba, p 216

    Google Scholar 

  • Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47:1287–1294

    Article  CAS  Google Scholar 

  • Hayes D (2016) Second generation fuels: why are they taking so long? In: Lund P, Byrne J, Berndes G, Vasalos I (eds) Advances in bioenergy: the sustainability challenge, 1st edn. Wiley, Chichester, p 163

    Google Scholar 

  • Hayes DJ, Hayes MHB (2009) The role that lignocellulosic feedstocks and various biorefining technologies can play in meeting Ireland’s biofuels targets. Biofuels Bioprod Biorefin 3:500–520

    Article  CAS  Google Scholar 

  • Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  CAS  PubMed  Google Scholar 

  • Hietala J, Vuori A, Johnsson P, Pollari I, Reutemann W, Kieczka H (2016) Formic acid. Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken, pp 1–22

    Book  Google Scholar 

  • Huang HJ, Ramaswamy S, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62:1–21

    Article  CAS  Google Scholar 

  • Humbirt D, Aden A (2008) Biochemical production of ethanol from corn stover: 2008 state of technology model. Technical report No.: NREL/TP-510-46214. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • International Energy Agency (2015) World energy outlook 2015. IEA. Organisation for Economic Co-operation and Development, Paris, p 718. https://www.iea.org/publications

    Book  Google Scholar 

  • International Sugar Organization (2009) Cogeneration opportunities in the world sugar industry. In: Bulletin MECAS Studies—International Sugar Organization 5(9). http://www.isosugar.org

  • Jambo SA, Abdulla A, Azhar SHM, Marbawi H, Gansau JA, Ravindra P (2016) A review on third generation bioethanol feedstock. Renew Sust Energ Rev 65:756–769. https://doi.org/10.1016/j.rser.2016.07.064

    Article  CAS  Google Scholar 

  • Janke L, Leite A, Nikolausz M, Schmidt T, Liebetrau J, Nelles M, Stinner W (2015) Biogas production from sugarcane waste: assessment on kinetic challenges for process designing. Int J Mol Sci 16:20685–20703. https://doi.org/10.3390/ijms160920685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jӧnsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  CAS  Google Scholar 

  • Kamate CS, Gangavati BP (2009) Cogeneration in sugar industries: technology options and performance parameters-a review. Cogen Distrib Gener J 24:6–33. https://doi.org/10.1080/15453660909595148

    Article  Google Scholar 

  • Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G (2010) Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89:S20–S28

    Article  CAS  Google Scholar 

  • Kennes D, Abubackar HN, Diaz M, Veiga M, Kennes C (2016) Bioethanol production from biomass: carbohydrate vs syngas fermentation. J Chem Technol Biotechnol 91:304–317

    Article  CAS  Google Scholar 

  • Khan MT, Seema N, Khan IA, Yasmine S (2017a) Applications and potential of sugarcane as an energy crop. In: Gorawala P, Mandhatri S (eds) Agricultural research updates, vol 16. Nova Science Publishers, New York, pp 1–24

    Google Scholar 

  • Khan MT, Seema N, Khan IA, Yasmine S (2017b) The green fuels: evaluation, perspectives, and potential of sugarcane as an energy source. Environ Res J 10(4)

    Google Scholar 

  • Khandekar DC, Palai T, Agarwal A, Bhattacharya PK (2014) Kinetics of sucrose conversion to fructo-oligosaccharides using enzyme (invertase) under free condition. Bioprocess Biosyst Eng 37(12):2529–2537. https://doi.org/10.1007/s00449-014-1230-5

    Article  CAS  PubMed  Google Scholar 

  • Khatiwada D, Seabra J, Silveira S, Walter A (2012) Power generation from sugarcane: biomass-a complementary option to hydroelectricity in Nepal and Brazil. Energy 48:241–254

    Article  Google Scholar 

  • Khatiwada D, Leduc S, Silveira S, McCallum I (2016) Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil. Renew Energy 85:371–386

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenergy 29:426–439

    Article  Google Scholar 

  • Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47. https://doi.org/10.1016/S0960-8524(03)00097-X

    Article  CAS  PubMed  Google Scholar 

  • Köchermann J, Schneider J, Matthischke S, Rönsch S (2015) Sorptive H2S removal by impregnated activated carbons for the production of SNG. Fuel Process Technol 138:37–41. https://doi.org/10.1016/j.fuproc.2015.05.004

    Article  CAS  Google Scholar 

  • Koppram R, Nielsen F, Albers E, Lambert A, Wannstrom S, Welin L (2013) Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol Biofuels 6:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Jones D, Hanna M (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581

    Article  CAS  Google Scholar 

  • Kummamuro B (2016) WBA global bioenergy statistics. World Bioenergy Association, Stockholm

    Google Scholar 

  • Lawford HG, Rousseau JD (1991) Fuel ethanol from hardwood hemicellulose hydrolysate by genetically engineered Escherichia coli B carrying genes from Zymomonas mobilis. Biotechnol Lett 13:191–196

    Article  CAS  Google Scholar 

  • Le Berre C, Serp P, Kalck P, Torrence GP (2014) Acetic acid. Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken, pp 1–34

    Book  Google Scholar 

  • Leal MRLV, Galdos MV, Scarpare FV, Seabra JE, Walter A (2013) Sugarcane straw availability, quality, recovery and energy use: a review. Biomass Bioenergy 53:11–19

    Article  Google Scholar 

  • Linde D, Macias I, Fernández-Arrojo L, Plou FJ, Jiménez A, Fernández-Lobato M (2009) Molecular and biochemical characterization of a beta-fructofuranosidase from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 75:1065–1073

    Article  CAS  PubMed  Google Scholar 

  • Lois-Correa J, Flores-Vela A, Ortega-Grimaldo D, Berman-Delgado J (2010) Experimental evaluation of sugar cane bagasse storage in bales system. J Appl Res Technol 8:365–377

    Google Scholar 

  • López González LM, Vervaeren H, Reyes IP, Dumoulin A, Romero OR, Dewulf J (2013) Thermo-chemical pre-treatment to solubilize and improve anaerobic biodegradability of press mud. Bioresour Technol 131:250–257

    Article  PubMed  CAS  Google Scholar 

  • López González LM, Reyes IP, Dewulf J, Budde J, Heiermann M, Vervaeren H (2014) Effect of liquid hot water pre-treatment on sugarcane press mud methane yield. Bioresour Technol 169:284–290

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, Elamder RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57–58(1):741–761

    Article  Google Scholar 

  • Macedo IC, Leal MRLV, Hassuani SJ (2001) Sugar cane residues for power generation in the sugar/ ethanol mills in Brazil. Energy Sustain Dev 5(1):77–82

    Article  Google Scholar 

  • Machado G, Leon S, Santos F, Lourega R, Dullius J, Mollmann ME, Eichler P (2016) Literature review on furfural production from lignocellulosic biomass. Nat Resour J 7(03):115

    CAS  Google Scholar 

  • Marek M, Bialobrzewski I, Zielinski M, Dębowski M, Krzemieniewski M (2014) Optimizing low-temperature biogas production from biomass by anaerobic digestion. Renew Energy 69:219–225

    Article  CAS  Google Scholar 

  • Martinez FAC, Balciunas EM, Salgado JM, González JMD, Converti A, de Souza Oliveira RP (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30(1):70–83

    Article  CAS  Google Scholar 

  • Maryana R, Ma’rifatun D, Wheni AI, Satriyo KW, Rizal WA (2014) Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia 47:250–254

    Article  CAS  Google Scholar 

  • McMillan JD (1997) Bioethanol production: status and prospects. Renew Energy 10:295–302

    Article  CAS  Google Scholar 

  • Modenbach AA, Nokes S (2014) Effects of sodium hydroxide pretreatment on structural components of biomass. Am Soc Agric Biol Eng 57:1187–1198

    CAS  Google Scholar 

  • Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels: a review. J Renew Sustain Ener 15(9):4255–4273

    Article  CAS  Google Scholar 

  • Mohapatra S, Mishra C, Behera S, Thatoi H (2017) Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass: a review. Renew Sust Energ Rev 78:1007–1032

    Article  CAS  Google Scholar 

  • Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M (2015) A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit Rev Biotechnol 35(3):342–354

    Article  PubMed  CAS  Google Scholar 

  • Morias PB, Rosa CA, Linardi VR, Carazza F, Nonato EA (2007) Production of fuel alcohol by saccharomyces starins from tropical habitats. Biotechnol Lett 18:1351–1356

    Article  Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993

    Article  CAS  PubMed  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  CAS  PubMed  Google Scholar 

  • Naidua D, Hlangothib S, John M (2018) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41

    Article  CAS  Google Scholar 

  • National Academic Press (2000) Biobased industrial products: priorities for research and commercialization, Washington, DC, p 162. https://doi.org/10.17226/5295

  • Neves PV, Pitarelo AP, Ramos LP (2016) Production of cellulosic ethanol from sugarcane bagasse by steam explosion: effect of extractives content, acid catalysis and different fermentation technologies. Bioresour Technol 208:184–194

    Article  CAS  PubMed  Google Scholar 

  • Nigam JN (2000) Continuous ethanol production from pineapple cannery waste using immobilized yeast cell. J Biotechnol 80:189–193

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan A, Sheffrin S (2003) Economics: principle and tools, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Oladi S, Aita G (2017) Optimization of liquid ammonia pretreatment variables for maximum enzymatic hydrolysis yield of energy cane bagasse. Ind Crop Prod 103:122–132

    Article  CAS  Google Scholar 

  • Oladi S, Aita G (2018) Interactive effect of enzymes and surfactant on the cellulose digestibility of un-washed and washed dilute ammonia pretreated energy cane bagasse. Biomass Bioenergy 109:221–230

    Article  CAS  Google Scholar 

  • Oleszek M, Król A, Tys J, Matyka M, Kulik M (2014) Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour Technol 156:303–306. https://doi.org/10.1016/j.biortech.2014.01.055

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74(1):17–24

    Article  CAS  Google Scholar 

  • Patil HJ, AntonyRaj MA, Shankar BB, Shetty MK, Kumar BP (2014) Anaerobic co-digestion of water hyacinth and sheep waste. Energy Procedia 52:572–578

    Article  CAS  Google Scholar 

  • Pellegrini LF, de Oliveira JS, Burbano JC (2013) Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills. Energy 35:1172–1180

    Article  CAS  Google Scholar 

  • Pothiraj C, Arumugam R, Gobinath M (2014) Sustaining ethanol production from lime pretreated water hyacinth biomass using mono and co-cultures of isolated fungal strains with Pichia stipitis. Bioresour Bioprocess 1:27

    Article  Google Scholar 

  • Purohit P, Michaelowa A (2007) CDM potential of bagasse cogeneration in India. Energy Policy 35:4779–4798

    Article  Google Scholar 

  • Qiu Z, Aita G, Mahalaxmi S (2014) Optimization by response surface methodology of processing conditions for the ionic liquid pretreatment of energy cane bagasse. J Chem Technol Biotechnol 89(5):682–689

    Article  CAS  Google Scholar 

  • Ranjan R, Thust S, Gounaris CE, Woo M, Floudas CA, Von Keitz M, Valentas KJ, Wei J, Tsapatsis M (2009) Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolyzates for improved ethanol yield and value-added product recovery. Microporous Mesoporous Mater 122:143–148

    Article  CAS  Google Scholar 

  • Rao PJM (1999) An overview of the co-products industries in India. In: Proceedings of the XXIII International Society of Sugar Cane Technologists, 22–26 Feb 1999, New Delhi

    Google Scholar 

  • Rastogi M, Shrivastava S (2017) Recent advances in second geenration bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev 80:330–340

    Article  Google Scholar 

  • Rein P (2004) Feasibility study on the production of fuel alcohol from Louisiana Molasses. Sugar Bull 82(12):13–17

    Google Scholar 

  • Rezende CA, de Lima MA, Maziero P, Ribeiro deAzevedo E, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54–71. https://doi.org/10.1186/1754-6834-4-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues M, Walter A, Faaij A (2003) Co-firing natural gas in biomass integrated gasification/ combined cycle system. Energy 28:1115–1131

    Article  CAS  Google Scholar 

  • Rosatella AA, Simeonov SP, Frade RF, Afonso CA (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793

    Article  CAS  Google Scholar 

  • Rosillo-Calle F, De Groot P, Hemstock SL, Woods J (2015) The biomass assessment handbook: energy for a sustainable environment, 2nd edn. Routledge/Taylor & Francis Group, New York

    Google Scholar 

  • Rouf MA, Bajpai PK, Jotshi CK (2010) Optimization of biogas generation from press mud in batch reactor. Bangladesh J Sci Ind Res 45:371–376

    Article  CAS  Google Scholar 

  • Rudolph A, Baudel H, Zacchi G, Hahn-Hagerdal B, Liden G (2007) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99:783–790

    Article  CAS  Google Scholar 

  • Salomon KR, Lora EES, Rocha MH, Almazán OO (2011) Cost calculations for biogas from vinasse biodigestion and its energy utilization. Sugar Ind 136(4):217–223

    CAS  Google Scholar 

  • Sam KK (2012) Ethyl alcohol or ethanol production from molasses by fermentation. http://www.inclusive-science-engineering.com/ethyl-alcohol-or-ethanol-production-from-molasses-by-fermentation. Accessed 4 June 2018

  • Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295

    Article  PubMed  CAS  Google Scholar 

  • Sarris D, Papanikolaou S (2016) Biotechnological production of ethanol: biochemistry, process and technologies. Eng Life Sci 16:307–329

    Article  CAS  Google Scholar 

  • Sathish S, Vivekanandan S (2015) Experimental investigation on biogas production using industrial waste (press mud) to generate renewable energy. Int J Innov Res Sci Eng Technol 4:388–392

    Google Scholar 

  • Seabra JEA, Macedo IC (2011) Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil. Energy Policy 39:421–428. https://doi.org/10.1016/j.enpol.2010.10.019

    Article  CAS  Google Scholar 

  • Seabra JEA, Macedo IC, Leal MRLV (2014) Greenhouse gases emissions related to sugarcane ethanol. In: Luis Augusto Barbosa Cortez (Coord) sugarcane bioethanol-R&D for productivity and sustainability, Editora Edgard Blücher, São Paulo. https://doi.org/10.5151/BlucherOA-Sugarcane-SUGARCANEBIOETHANOL_29. p 291–300

    Google Scholar 

  • Shaibani N, Ghazvini S, Andalibi MR, Yaghmaei S (2011) Ethanol production from sugarcane bagasse by means of enzymes produced by solid state fermentation method. Int J Chem Mol Eng 5(11):966–969

    Google Scholar 

  • Sheehan GJ, Greenfield PF (1980) Utilization, treatment and disposal of distillery waste water. Water Res 14(3):257–277

    Article  CAS  Google Scholar 

  • Sivers MV, Zacchi G, Olsson L, Hahn-Hugerdal B (1994) Cost analysis of ethanol production from willow using recombinant E. coli. Biotechnol Prog 10:555–560

    Article  Google Scholar 

  • Stenberg K, Tenborg C, Galbe M, Zacchi G (1998) Optimization of steam pretreatment of SO2- impregnated mixed softwoods for ethanol production. J Chem Technol Biotechnol 71:299–308

    Article  CAS  Google Scholar 

  • Stephen JD, Mabee W, Saddler WE, Saddler JN (2012) Will second generation ethanol be able to compete with first generation ethanol? Opportunities for cost reduction. Biofuels Bioprod Biorefin 6:159–176

    Article  CAS  Google Scholar 

  • Sumardiono S, Riyanta AB, Matin HH, Kusworo TD, Jos B (2017) Increasing biogas production from sugar cane baggase by anaerobic co-digestion with animal manure. In: Iskandar I, Ismadji S, Agustina TE, Yani I, Komariah LN, Hasyim S (eds) Proceedings MATEC Web of Conferences: Sriwijaya International Conference on Engineering, Science and Technology (SICEST), Bangka Island, Nov 9–10, 2016, vol. 101. https://doi.org/10.1051/matecconf/201710102014

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  • Sun JX, Sun XF, Sun RC, Su YQ (2004) Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr Polym 56:195–204

    Article  CAS  Google Scholar 

  • Sundaranayagi S, Sirajunnisa A, Ramasamy V (2017) Production of biogas by anaerobic digestion of press mud using iron, cobalt and nickel. Indian J Sci Res 14(1):374–377

    CAS  Google Scholar 

  • Sutton D, Kelleher BP, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73:155–173

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(6):701–708

    Article  CAS  PubMed  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    Article  CAS  PubMed  Google Scholar 

  • Talha Z, Ding W, Mehryar E, Hassan M, Bi J (2016) Alkaline pretreatment of sugarcane bagasse and filter mud codigested to improve biomethane production. Biomed Res Int:10. https://doi.org/10.1155/2016/8650597

    Article  CAS  Google Scholar 

  • Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 98:1655–1663

    Article  CAS  PubMed  Google Scholar 

  • Toasa J (2009) Colombia: a new ethanol producer on the rise? USDA Economic Research Service, Washington, DC. http://www.ers.usda.gov. Accessed 10 Nov 2018

  • Torres da Silva G, Chiarello LM, Lima EM, Ramos LP (2016) Sono-assisted alkaline pretreated of sugarcane bagasse for cellulosic ethanol production. Catal Today 269:21–28

    Article  CAS  Google Scholar 

  • UNDP (2009) Preliminary assessment of bioenergy production in the Caribbean. United Nations Development Programme, Barbados and the OECS

    Google Scholar 

  • United States Department of Agriculture (2006) The economic feasibility of ethanol production from sugar in the United States. https://www.usda.gov/oce/reports/energy/EthanolSugarFeasibilityReport3.pdf. Accessed 20 Nov 2018

  • Valdivia M, Galan JL, Laffarga J, Ramos JL (2016) Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol 9(5):585–594

    Article  PubMed  PubMed Central  Google Scholar 

  • Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2:553–588

    Article  CAS  Google Scholar 

  • Veana F, Martínez-Hernández JL, Aguilar CN, Rodríguez-Herrera R, Michelena G (2014) Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Braz J Microbiol 45:373–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbelen PJ, De Schutter DP, Delvaux F, Verstrepen KJ, Delvaux FR (2006) Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett 28(19):1515–1525

    Article  CAS  PubMed  Google Scholar 

  • Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2:573–584

    Article  CAS  Google Scholar 

  • Walter A, Dolzan P (2009) Country report: Brazil, IEA bioenergy task 40, sustainable bio-energy trade securing supply and demand. UNICAMP, Campinas, p 66

    Google Scholar 

  • Watson J, Zhang Y, Si B, Chen WT, de Souza R (2018) Gasification of biowaste: a critical review and outlooks. Renew Sust Energ Rev 83:1–17

    Article  CAS  Google Scholar 

  • White JE (2009) Investigation into the hydrothermal treatment of sugarcane bagasse under near and super critical conditions. Doctoral Dissertation, Louisiana State University. https://digitalcommons.lsu.edu/gradschool_dissertations/1164

  • Wilawan W, Pholchan P, Aggarangsi P (2014) Biogas production from co-digestion of Pennisetum pururem cv. Pakchong 1 grass and layer chicken manure using completely stirred tank. Energy Procedia 52:216–222

    Article  CAS  Google Scholar 

  • Wu W, Kawamoto K, Kuramochi H (2006) Hydrogen-rich synthesis gas production from waste wood via gasification and reforming technology for fuel cell application. J Mater Cycles Waste Manage 8(1):70–77. https://doi.org/10.1007/s10163-005-0138-1

    Article  CAS  Google Scholar 

  • Yang ST, Liu X, Zhang Y (2007) Metabolic engineering – applications, methods and challenges. In: Yang ST (ed) Bioprocessing for value added products from renewable resources. Elsevier Publishers, Amsterdam, pp 73–118

    Chapter  Google Scholar 

  • Yin H, Lee T, Choi J, Yip ACK (2016) On the zeolitic imidazolate framework-8 (ZIF-8) membrane for hydrogen separation from simulated biomass-derived syngas. Microporous Mesoporous Mater 233:70–77. https://doi.org/10.1016/j.micromeso.2015.10.033

    Article  CAS  Google Scholar 

  • Zhang AP, Liu CF, Sun RC, Xie J (2013) Extraction, purification, and characterization of lignin fractions from sugarcane bagasse. BioResources 8:1604–1614

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, S., Ali, M.A., Aita, G.M., Khan, M.T., Khan, I.A. (2019). Source-Sink Relationship of Sugarcane Energy Production at the Sugar Mills. In: Khan, M., Khan, I. (eds) Sugarcane Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-030-18597-8_16

Download citation

Publish with us

Policies and ethics