Skip to main content

Sugarcane as a Bioenergy Source

  • Chapter
  • First Online:
Book cover Sugarcane Biofuels

Abstract

Global energy demands are extensively being met through non-renewable resources, which are not only depleting rapidly, but also causing higher greenhouse gas emissions. Therefore, alternative sources of energy are being looked-for, to fulfill the needs of energy as well as to mitigate the effects of climate change. Bioenergy crops are anticipated to be a promising option in this context. Sugarcane is one of the most suitable crops for bioenergy production, attributed to its C4 characteristics which result in yielding huge biomass per unit area. Moreover, tillering and ratooning ability of sugarcane makes it an extremely attractive crop for biofuels and bioenergy engenderment. One ton of sugarcane produces 85–100 kg sugar and 35–45 kg molasses—which can deliver up to 22–25% recovery of ethanol through fermentation. About 80% of the world’s molasses is used for ethanol production through biochemical processing. Presently, first-generation bioethanol is being produced through sugarcane molasses fermentation and distillation; however, bagasse and other plant residues which constitute two thirds of its biomass may also be utilized for biofuel and bioenergy production through biochemical and/or thermochemical conversions. Having great potential for energy production, sugarcane is expected to play significant role in world’s energy matrix in coming years. This chapter presents an overview of introductory aspects of sugarcane crop as an energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagoas UUSG (2000) Em 1927, o Primeiro grande empreendimento brasileiro em álcool combustivel. Boletim Enfoque 7

    Google Scholar 

  • Allen CJ, Mackay MJ, Aylward JH, Campbell JA (1997) New technologies for sugar milling and by-product modification. In: Keating BA, Wilson JR (eds) Intensive sugarcane production: meeting the challenges beyond 2000. CAB International, Wallingford, pp 267–285

    Google Scholar 

  • Allsopp P, Samson P, Chandler K (2000) Pest management. In: Hogarth M, Allsopp P (eds) Manual of cane growing. Bureau of Sugar Experimental Stations, Indooroopilly, pp 291–337

    Google Scholar 

  • Aoki N, Scofield GN, Wang XD, Offler CE, Patrick JW, Furbank RT (2006) Pathway of sugar transport in germinating wheat seeds. Plant Physiol 141:1255–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besse P, McIntyre CL, Berding N (1997) Characterisation of Erianthus sect Ripidium and Saccharumgermplasm (Andropogoneae-Saccharinae) using RFLP markers. Euphytica 93:283–292

    Article  CAS  Google Scholar 

  • Bokor L (2016) Energy resources and energetic challenges for the United Kingdom in the shadow of Brexit. Energy 4(1):854–897

    Google Scholar 

  • Buckeridge M, Dos Santos W, De Souza A (2010) Routes for cellulosic ethanol in Brazil. In: LAB C (ed) Sugarcane bio-ethanol. R&D for productivity and sustainability. Edgard Blucher, São Paulo, pp 365–380

    Google Scholar 

  • Bull TA, Glasziou KT (1979) Sugarcane. In: Lovett JV, Lazenby A (eds) Australian field crops. Angus and Robertson Publishers, Sydney, pp 95–113

    Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Biol 47(1):445–476

    Article  CAS  Google Scholar 

  • Carvalho-Netto OV, Bressiani JA, Soriano HL, Fiori CS, Santos JM, Barbosa GV, Xavier MA, Landell MG, Pereira GA (2014) The potential of the energy cane as the main biomass crop for the cellulosic industry. Chem Biol Technol Agric 1(1):20. https://doi.org/10.1186/s40538-014-0020-2

    Article  CAS  Google Scholar 

  • Cho R (2018) Is biomass really renewable? Earth Institute, Columbia University

    Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann JC (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    Article  PubMed  Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breading, vol 11. Elsevier, Amsterdam, pp 7–84

    Chapter  Google Scholar 

  • Davis SC, Boddey RM, Alves BJ, Cowie AL, George BH, Ogle SM, Smith P, van Noordwijk M, van Wijk MT (2013) Management swing potential for bioenergy crops. GCB Bioenergy 5(6):623–638

    Article  Google Scholar 

  • de Souza AP, Leite DC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6(2):564–579

    Article  CAS  Google Scholar 

  • de Souza AP, Grandis A, Leite DC, Buckeridge MS (2014) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenergy Res 7(1):24–35

    Article  CAS  Google Scholar 

  • FAOSTAT (2016) Crops. Food and Agriculture Organization of United Nations. http://www.fao.org/faostat/en/#data/QC/visualize. Accessed 24 Nov 2018

  • FAOSTAT (2017) Crops. Food and Agriculture Organization of United Nations. http://www.fao.org/faostat/en/#data/QC/visualize. Accessed 24 Nov 2018

  • Furtado A, Lupoi JS, Hoang NV, Healey A, Singh S, Simmons BA, Henry RJ (2014) Modifying plants for biofuel and biomaterial production. Plant Biotechnol J 12(9):1246–1258

    Article  CAS  PubMed  Google Scholar 

  • Groenewald J-H, Botha FC (2008) Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic Res 17(1):85–92

    Article  CAS  PubMed  Google Scholar 

  • Ham G, McGuire P, Kingston G (2000) Irrigation of sugarcane. In: Hogarth M, Allsopp P (eds) Manual of cane growing. Bureau of Sugar Experiment Stations, Indooroopilly, pp 369–377

    Google Scholar 

  • Hammond BW (1999) Saccharum spontaneum (Gramineae) in Panama: the physiology and ecology of invasion. J Sust For 8(3–4):23–38. https://doi.org/10.1300/J091v08n03_03

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14(9):2000–2014

    Article  Google Scholar 

  • Hoang NV, Furtado A, Botha FC, Simmons BA, Henry RJ (2015) Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Front Bioeng Biotechnol 3:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodkinson TR, Chase MW, Lledó DM, Salamin N, Renvoize SA (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115(5):381–392

    Article  CAS  PubMed  Google Scholar 

  • International Renewable Energy Agency (2017) Bioenegy. http://www.irena.org/bioenergy. Accessed 24 Nov 2018

  • Jeswiet J (1929) The development of selection and breeding of the sugarcane in Java. Proceedings of the 3rd congress of the International Society of Sugar Cane Technologists, Soerabaia, pp 44–57

    Google Scholar 

  • Jung JH, Vermerris W, Gallo M, Fedenko JR, Erickson JE, Altpeter F (2013) RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotechnol J 11(6):709–716. https://doi.org/10.1111/pbi.12061

    Article  CAS  PubMed  Google Scholar 

  • Kandel R, Yang X, Song J, Wang J (2018) Potentials, challenges, and genetic and genomic resources for sugarcane biomass improvement. Front Plant Sci 9:151. https://doi.org/10.3389/fpls.2018.00151

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MT, Seema N, Khan IA, Yasmine S (2017a) Applications and potential of sugarcane as an energy crop. In: Gorawala P, Mandhatri S (eds) Agricultural research updates, vol 16. Nova Science Publishers, New York, pp 1–24

    Google Scholar 

  • Khan MT, Seema N, Khan IA, Yasmine S (2017b) The green fuels: evaluation, perspectives, and potential of sugarcane as an energy source. Environ Res J 10(4):381–396

    Google Scholar 

  • Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol 38(7):803–807

    Article  CAS  PubMed  Google Scholar 

  • Kimbeng CA, McRae TA, Cox M (2001) Optimizing early generation selection in sugarcane breeding. Proc Int Soc Sugarcane Technologists 24:488–494

    Google Scholar 

  • Knoll JE, Anderson WF, Richard EP Jr, Doran-Peterson J, Baldwin B, Hale AL, Viator RP (2013) Harvest date effects on biomass quality and ethanol yield of new energycane (Saccharum hyb.) genotypes in the Southeast USA. Biomass Bioenergy 56:147–156

    Article  CAS  Google Scholar 

  • Landell MA, Bressiani JA (2008) Melhoramento genético, caracterização e manejo varietal. Cana-de-açúcar Campinas. Instituto Agronômico:101–155

    Google Scholar 

  • Loureiro ME, Barbosa MH, Lopes FJ, Silvério FO (2011) Sugarcane breeding and selection for more efficient biomass conversion in cellulosic ethanol. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp 199–239

    Chapter  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh D (2000) Sugar milling. In: Hogarth M, Allsopp P (eds) Manual of cane growing. Bureau of Sugar Experiment Stations, Indooroopilly, pp 369–377

    Google Scholar 

  • Matsuoka S, Stolf R (2012) Sugarcane tillering and ratooning: key factors for a profitable cropping. In: Joao FG, Kaue DC (eds) Sugarcane: production, cultivation and uses. Nova Science Publishers, New York, pp 137–157

    Google Scholar 

  • Matsuoka S, Bressiani J, Maccheroni W, Fouto I, Santos F, Borém A (2012) Sugarcane bioenergy. In: Santos F, Borém A, Caldas C (eds) Sugarcane: bioenergy, sugar and ethanol-technology and prospects (Viçosa: Suprema) MAPA/ACS, pp 471–500

    Google Scholar 

  • Matsuoka S, Kennedy AJ, EGDd S, Tomazela AL, Rubio LCS (2014) Energy cane: its concept, development, characteristics, and prospects. Adv Bot 2014: Article ID 597275

    Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Miller JD, Tai PYP (1992) Use of plant introduction in sugarcane cultivar development. In: Shands HL, Weisner LE (eds) Use of plant introduction in cultivar development Part 2. Special Publication, Crop Science Society of America, Madison, pp 137–149

    Google Scholar 

  • Milligan SB, Gravios KA, Bischoff KP, Martin FA (1990) Crop effects on broad-sense heritabilities and genetic variances of sugarcane yield components. Crop Sci 30(2):344–349

    Article  Google Scholar 

  • Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13(3):304–311

    Article  Google Scholar 

  • Peskett L, Rachel S, Chris S (2007) Biofuels, agriculture and poverty reduction. Overseas Development Institute, UK Department for International Development (DfID), London. https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/3441.pdf. Accessed 30 Apr 2019

  • Pessoa-Jr A, Roberto IC, Menossi M, Santos RRd, Filho SO, Penna TCVJAB (2005) Perspectives on bioenergy and biotechnology in Brazil. Appl Biochem Biotechnol 121(1-3):59–70. https://doi.org/10.1385/abab:121:1-3:0059

    Article  Google Scholar 

  • Price S (1963) Cytogenetics of modern sugarcane. Econ Bot 17:97–106. https://doi.org/10.1007/BF02985359

    Article  Google Scholar 

  • Price S (1965) Cytology of Saccharum robustum and related sympatric species and natural hybrids. United States Department of Agriculture: Agricultural Research Service Technical Bulletin 1337:47

    Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    Article  CAS  PubMed  Google Scholar 

  • Renewable Energy Policy Network for the 21st Century (2016) Global status report. REN21 secretariat, Paris

    Google Scholar 

  • Sandhu H, Gilbert R (2014) Production of biofuel crops in Florida: sugarcane/energy cane. The Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville. http://edis.ifas.ufl.edu/pdffiles/AG/AG30300.pdf. Accessed 15 Nov 2018

  • Sanjuan R, Anzaldo J, Vargas J, Turrado J, Patt R (2001) Morphological and chemical composition of pith and fibers from Mexican sugarcane bagasse. Holz als Roh-und Werkstoff 59(6):447–450

    Article  CAS  Google Scholar 

  • Smook G (1992) Handbook for pulp and paper technologists. TAPPI Press, Peachtree Corners

    Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–253

    Chapter  Google Scholar 

  • STATISTA (2017) Fuel ethanol production worldwide in 2017, by country. https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/. Accessed 24 Nov 2018

  • Sukumaran RK, Mathew AK, Kumar MK, Abraham A, Chistopher M, Sankar M (2017) First-and second-generation ethanol in India: a comprehensive overview on feedstock availability, composition, and potential conversion yields. In: Chandel AK, Sukumaran RK (eds) Sustainable biofuels development in India. Springer International Publishing, Switzerland. pp 223–246

    Chapter  Google Scholar 

  • Tai PYP, Miller JD (2001) A core collection for Saccharum spontaneum L. from the world collection of sugarcane. Crop Sci 41:879–885

    Article  Google Scholar 

  • Talukdar D, Verma DK, Malik K, Mohapatra B, Yulianto R (2017) Sugarcane as a potential biofuel crop. In: Mohan C (ed) Sugarcane biotechnology: challenges and prospects. Springer International Publishing, Cham, pp 123–137. https://doi.org/10.1007/978-3-319-58946-6_9

    Chapter  Google Scholar 

  • Tew TL, Cobill RM (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 273–294

    Chapter  Google Scholar 

  • Theander O, Westerlund E (1993) Quantitative analysis of cell wall components. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 83–104

    Google Scholar 

  • Van Antwerpen R, Berry S, Van Antwerpen T, Smithers J, Joshi S, Van Der Laan M (2013) Sugarcane as an energy crop: its role in biomass economy. In: Singh BP (ed) Biofuel crop sustainability. Wiley, Hoboken, pp 53–108

    Chapter  Google Scholar 

  • van der Merwe MJ, Groenewald J-H, Stitt M, Kossmann J, Botha FC (2010) Downregulation of pyrophosphate: D-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels. Planta 231(3):595–608

    Article  PubMed  Google Scholar 

  • Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8(3):263–276

    Article  CAS  PubMed  Google Scholar 

  • Wolf D (2012) Adjusting expectations of scale based on limitations of supply: a review of the case for a forest bioenergy strategy that prioritizes decentralization, efficiency, and integration. Dissertation, University of Toronto

    Google Scholar 

  • Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117

    Article  CAS  PubMed  Google Scholar 

  • Xavier MR (2007) The Brazilian sugarcane ethanol experience. Competitive Enterprise Institute, Washington, DC200714p. http://www.cei.org. Accessed 25 Apr 2019

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13(8):421–429

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raza, G., Ali, K., Hassan, M.A., Ashraf, M., Khan, M.T., Khan, I.A. (2019). Sugarcane as a Bioenergy Source. In: Khan, M., Khan, I. (eds) Sugarcane Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-030-18597-8_1

Download citation

Publish with us

Policies and ethics