Skip to main content

Fungal Diseases of Animals: Symptoms and Their Cure by Natural Products

  • Chapter
  • First Online:
  • 364 Accesses

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

From ancient times people have been using medicinal plants for the treatment of a wide variety of diseases. This traditional use of plants is based upon pragmatic, timeless trial and error, correlating certain plants to the management and cure of particular diseases. The traditional way by which these plants were used can still be found in communities, passed down through natural history, and still prevails. MAPs possess a wide range of pharmacological activities. The use of medicinal plants has been increasing steadily with notable use in the pharmaceutical, cosmetic and food industries. With the discovery and extensive consumption of synthetic antibiotics, some resistant strains of microbes like multidrug-resistant strains of Mycobacterium tuberculosis, Klebsiella pneumoniae and Pseudomonas aeruginosa, penicillin-resistant Streptococcus pneumoniae (PRSP), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VREF) have emerged and are a threat to the successful treatment of different dreadful diseases associated with these microbes. Thus, it is a strong challenge to the scientist community to search for alternatives to curb these dreadful diseases.

The antibacterial activity of various plant extracts was tested against a set of bacterial strains, including both Gram-positive and Gram-negative bacterial strains. The activity was determined by agar well diffusion method. The plant shows a broad spectrum of antibacterial activity. Methanolic extract was found to be the most active against all the bacterial strains tested and showed maximum sensitivity. The methanolic extract of Ajuga bracteosa showed highest sensitivity in all the three concentrations with zones of inhibition of 12.6 ± 1.1, 15.3 ± 1.1 and 18.6 ± 1.7 at 40 μL, 70 μL and 100 μL (4, 7 and 10 mg of plant extract), respectively, against Gram-positive bacteria, Proteus vulgaris.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • A.P.H.A (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Adetutu A, Morgan WA, Corcoran O (2011) Antibacterial, antioxidant and fibroblast growth stimulation activity of crude extracts of Bridelia ferruginea leaf, a wound-healing plant of Nigeria. J Ethnopharmacol 133(1):116–119

    Article  PubMed  Google Scholar 

  • Agyare C, Boakye YD, Bekoe EO, Hensel A, Dapaah SO, Appiah T (2016) Review: African medicinal plants with wound healing properties. J Ethnopharmacol 177:85–100

    Article  CAS  PubMed  Google Scholar 

  • Ahmad R (2013) Photochemical, antimicrobial, insecticidal and brine shrimp lethality bioassay of the crude methanolic extract of Ajuga parviflora Benth. Pak J Pharm Sci 26(4):751–756

    PubMed  Google Scholar 

  • Ahmad I, Mehmood Z, Mohammad F (1998) Screening of some Indian medicinal plants for their antimicrobial properties. J Ethnopharmacol 62(2):183–193

    Article  CAS  PubMed  Google Scholar 

  • Atta-ur-Rahman Choudhary MI, Thomsen WJ (2001) Bioassay techniques for drug development, vol 16. Harwood Academic Publishers, Amsterdam

    Book  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Toxicol 46(2):446–475

    Article  CAS  PubMed  Google Scholar 

  • Barry AL (1976) The antimicrobic susceptibility test: principles and practices. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Bennett SCJ (1931) Cryptococcus pneumonia in Equidae. J Compo Path 44:85–105

    Article  Google Scholar 

  • Betina V (1994) Mechanisms of action of antibiotics and mycotoxins. In: Bioactive secondary metabolites of microorganisms. Elsevier Science, Amsterdam, pp 297–375

    Google Scholar 

  • Bodin E, Lenormand C (1912) Recherches sur les poisons produits par l’ Aspergillus fumigatus. Ann Inst Pasteur 26:371–380

    CAS  Google Scholar 

  • Boe J, Hartmann O, Thjistta T (1939) A serological study of Aspergillus fumigatus. Acta Pathol Microbiol Scand 16:178–186

    Article  Google Scholar 

  • Bouhdid S, Abrini J, Amensour M, Zhiri A, Espuny MJ, Manresa A (2010) Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil. J Appl Microbiol 109(4):1139–1149

    Article  CAS  PubMed  Google Scholar 

  • Bullen JJ (1950) Epizootic lymohangitis. J R Army Vet Cps 21:158–159. 22, 8–11

    Google Scholar 

  • Canadanovic-Brunet J, Cetkovic G, Djilas S, Tumbas V, Bogdanovic G, Mandic A, Canadanovic V (2008) Radical scavenging, antibacterial, and antiproliferative activities of Melissa officinalis L. extracts. J Med Food 11(1):133143

    Article  Google Scholar 

  • Ceni C, Besta C (1905) Sclerosi in placche sperimentale da tossici aspergillari. Sulla persistenza del potere vitale e patogeno della spora aspergillare nell’ organismo animale. Contributo sperimentale alIa recidivita della pellagra. Arch ital Mal ner Mentali 42(125):496

    Google Scholar 

  • Chomnawang MT, Surassmo S, Wongsariya K, Bunyapraphatsara N (2009) Antibacterial activity of Thai medicinal plants against methicillin-resistant Staphylococcus aureus. Fitoterapia 80(2):102–104

    Article  CAS  PubMed  Google Scholar 

  • Christaki E, Bonos E, Giannenas I, Florou-Paneri P (2012) Aromatic plants as a source of bioactive compounds. Agriculture 2(3):228–243

    Article  Google Scholar 

  • Cos P, Vlietinck AJ, Berghe DV, Maes L (2006) Anti-infective potential of natural products: how to develop a stronger In vitro ‘proof-of-concept’. J Ethnopharmacol 106(3):290–302

    Article  CAS  PubMed  Google Scholar 

  • Cox LB, Tolhurst JC (1946) Human torulosis: a clinical, pathological and microbiological study with a report of thirteen cases. Melbourne University Press in Association with Oxford Univ. Press, Melbourne and London, Melbourne, p 149

    Google Scholar 

  • Curasson G (1942) Traite de pathologie exotique veterinaire et comparee, vol 2, 2nd edn. Maladies Microbiennes, Paris: Vigot Freres

    Google Scholar 

  • Dastmalchi K, Dorman HD, Oinonen PP, Darwis Y, Laakso I, Hiltunen R (2008) Chemical composition and In vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT-Food Sci Technol 41(3):391–400

    Article  CAS  Google Scholar 

  • Delaquis PJ, Stanich K, Girard B, Mazza G (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J Food Microbiol 74(1):101–109

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Zhang X, Bao C, Zhu Y, Zhuang L, Tan Z, Tang F (2015) Antibiotic resistance and molecular characterization of Vibrio cholera strains isolated from an outbreak of cholera epidemic in Jiangsu province. Zhonghua yu fang yi xue za zhi [Chinese J Prev Med] 49(2):128–131

    CAS  Google Scholar 

  • Erturk O (2006) Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia 61(3):275–278

    Article  Google Scholar 

  • Fadli M, Saad A, Sayadi S, Chevalier J, Mezrioui NE, Pagès JM, Hassani L (2012) Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection–bacteria and their synergistic potential with antibiotics. Phytomedicine 19(5):464–471

    Article  CAS  PubMed  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  PubMed  Google Scholar 

  • Fred CT (2006) Mechanism of antimicrobial resistance in bacteria. Am J Med 119(6A):3–10

    Google Scholar 

  • Gaunt LF, Higgins SC, Hughes JF (2005) Interaction of air ions and bactericidal vapours to control micro-organisms. J Appl Microbiol 99(6):1324–1329

    Article  CAS  PubMed  Google Scholar 

  • Gibbons S (2004) Anti-staphylococcal plant natural products. Nat Prod Rep 21(2):263–277

    Article  CAS  PubMed  Google Scholar 

  • Henrici AT (1939) An endotoxin from Aspergillus fumigatus. J lmmunol 36:19–338

    Google Scholar 

  • Houang ET, Chu YW, Lo WS, Chu KY, Cheng AF (2003) Epidemiology of rifampin ADP-ribosyltransferase (arr-2) and metallo-β-lactamase (blaIMP-4) gene cassettes in class 1 integrons in Acinetobacter strains isolated from blood cultures in 1997–2000. Antimicrob Agents Chemother 47(4):1382–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde HA, Richards M, Williams DA (1956) Allergy to mould spores in Britain. Brit Med J 1:886–890

    Article  CAS  PubMed  Google Scholar 

  • Iauk L, Lo Bue AM, Milazzo I, Rapisarda A, Blandino G (2003) Antibacterial activity of medicinal plant extracts against periodontopathic bacteria. Phytother Res 17(6):599–604

    Article  CAS  PubMed  Google Scholar 

  • Israili ZH, Lyoussi B (2009) Ethnopharmacology of the plants of genus Ajuga. Pak J Pharm Sci 22(4):425–462

    CAS  PubMed  Google Scholar 

  • Kotliar E (1894) Contribution a l’etude de la pseudo-tuberculose aspergillaire. Ann Inst Pasteur 8:479–489

    Google Scholar 

  • Leber T (1882) Ueber die Wachsthumsbedingungen der SchimmeIpilze im menschlichen und thierischen K~rper. Berl klin Wschr 19:161–164. and 301

    Google Scholar 

  • Lesbouyrles G (1952) Actinophytose a Streptothrix actinomyces chez Ie mouton. Rec MM Vet 128:465–447

    Google Scholar 

  • Lin J, Opoku AR, Geheeb-Keller M, Hutchings AD, Terblanche SE, Jäger AK, Van Staden J (1999) Preliminary screening of some traditional Zulu medicinal plants for anti-inflammatory and anti-microbial activities. J Ethnopharmacol 68(1):267–274

    Article  CAS  PubMed  Google Scholar 

  • Lucet A (1897) De l’ Aspergillus fumigatus chez animaux domestioues et dans les oeufs en incubation. Etude clinique et experimentale, vol 108. Ch. Mendel, Paris

    Google Scholar 

  • Macaigne M, Nicaud P (1927a) Recherches sur la sporo-agglutination dans ’aspergillose pulmonaire. C R Soc Biol Paris 96:444–445

    Google Scholar 

  • Macaigne M, Nicaud P (1927b) Recherches sur les reactions antigeniques dans l’ aspergillose. Intra derma reaction antigenique focale. C R Soc Biol Paris 96:446–448

    Google Scholar 

  • Manges AR, Johnson JR, Foxman B, O Bryan TT, Fullerton KE, Riley LW (2001) Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. New Engl J Med 345:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T (1929) Investigation of aspergilli by serological methods. Trans Brit Mycol Soc 14:69–88

    Article  Google Scholar 

  • Mayer AC, Emmert (1815) Verschimmelung (Mucedo) im lebenden Korper. Dtsch Arch Anat Physiol (Meek l) 1:310

    Google Scholar 

  • Mc Grath JT (1954) Cryptococcosis of the central nervous system in domestic animals. Amer J Path 30:651

    Google Scholar 

  • Norrell SA, Messley KE (1997) Microbiology laboratory manual: Principles and Applications. Prentice-Hall, New Jersey

    Google Scholar 

  • Obici A (1898) Ueber die pathogenen Eigenschaften des Aspergillus fumigatus. Be Hr Path Anat 23:197–237

    Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304

    Article  CAS  PubMed  Google Scholar 

  • Otte W (1928) Die Krankheiten des GeflUgels mit besonderer BerUcksichtigung der Anatomie und der Hygiene. Rich. Schoetz Verlag, Berlin, p 214

    Google Scholar 

  • Owen R (1832) On the anatomy of the flamingo (Phoonicopterus ruber, Linn.). Proczool Soc Lond 2:141–144

    Google Scholar 

  • Pallin WA (1904) A treatise on Epizootic lymphangitis, 2nd edn. University Press of Liverpool, London, p 57

    Book  Google Scholar 

  • Palmer KL, Kos VN, Gilmore MS (2010) Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol 13(5):632–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez C, Pauli M, Bazerque P (1990) An antibiotic assay by the agar well diffusion method. Acta Biol Med Exp 15:113–115

    Google Scholar 

  • Ploy MC, Lambert T, Couty JP, Denis F (2000) Integrons: an antibiotic resistance gene capture and expression system. Clin Chem Lab Med 38(6):483–487

    Article  CAS  PubMed  Google Scholar 

  • Plunkett JJ (1949) Epizootic lymphangitis. JR Army Vet Cps 20:94–99

    Google Scholar 

  • Ravi A, Avershina E, Foley SL, Ludvigsen J, Storro O, Oien T, Rudi K (2015) The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons. Sci Rep 5:1–11

    Article  Google Scholar 

  • Renon L (1897) Etude sur l’aspergillose chez les animaux et chez l’homme. Masson et cie, Paris, p 301

    Google Scholar 

  • Rios JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100(1):80–84

    Article  CAS  PubMed  Google Scholar 

  • Rostami H, Kazemi M, Shafiei S (2012) Antibacterial activity of Lavandula officinalis and Melissa officinalis against some human pathogenic bacteria. Asian J Biochem 7(3):133–142

    Article  Google Scholar 

  • Rousseau E, Serrurier (1841) Development de cryptogames sur les tissues devert-br-s vivants. CR AcadSci, Paris 13:18–19

    Google Scholar 

  • Rowe-Magnus DA, Mazel D (1999) Resistance gene capture. Curr Opin Microbiol 2(5):483–488

    Article  CAS  PubMed  Google Scholar 

  • Russell AD, Chopra I (1990) Understanding antibacterial action and resistance. Ellis Horwood, New York, pp 174–175

    Google Scholar 

  • Saidana D, Mahjoub MA, Boussaada O, Chriaa J, Chéraif I, Daami M, Helal AN (2008) Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae). Microbiol Res 163(4):445–455

    Article  CAS  PubMed  Google Scholar 

  • Salvin SB (1952) Endotoxin in pathogenic fungi. J lmmunol 69:89–99

    CAS  Google Scholar 

  • Sarkar A, Pazhani GP, Chowdhury G, Ghosh A, Ramamurthy T (2015) Attributes of carbapenemase encoding conjugative plasmid pNDM-SAL from an extensively drug-resistant Salmonella enterica serovar senftenberg. Front Microbiol 6:1–10

    Article  Google Scholar 

  • Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A (2004) Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28(5):519–542

    Article  CAS  Google Scholar 

  • Segretain G, Verge J, Drieux H, Mariatj F, Paraf A, Labie C, Theron B (1956) Mammite a “Cryptococcus neoformaris”. Bull Acad Vet Fr 29:33–41

    Google Scholar 

  • Shokeen P, Bala M, Tandon V (2009) Evaluation of the activity of 16 medicinal plants against Neisseria gonorrhoeae. Int J Antimicrob Agents 33(1):86–91

    Article  CAS  PubMed  Google Scholar 

  • Simon J (1955) In vitro inhibition of mixed strains of Cryptococcus neoformans isolated from cattle. Amer J Vet Res 16:394–396

    CAS  PubMed  Google Scholar 

  • Singh S (1956) Equine cryptococcosis (epizootic lymphangitis). Indian Vet J 32:260–270

    Google Scholar 

  • Stanojevic D, Comic L, Stefanovic O, Solujic-Sukdolak S (2010) In vitro synergistic antibacterial activity of Salvia officinalis L. and some preservatives. Arch Biol Sci 62(1):167–174

    Article  Google Scholar 

  • Sutcliffe J, Mueller J, Utt E (1999) Antibiotic Resistance Mechanisms of Bacterial Pathogens. In: Manual of Industrial Microbiology and Biotechnology, A.L. Demain, J.E. Davies (Eds.), ASM Press, Washington, USA, pp. 759–775

    Google Scholar 

  • Tally FP (1999) Researchers reveal ways to defeat ‘superbugs’. Drug Discov Today 4(9):395–398

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya H, Iinuma M (2000) Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine 7(2):161–165

    Article  CAS  PubMed  Google Scholar 

  • Urbain A, Guillot G (1938) Les aspergilloses aviaires. Rev Path Compo 38:929–955

    Google Scholar 

  • Uzun E, Sariyar G, Adsersen A, Karakoc B, Otuk G, Oktayoglu E, Pirildar S (2004) Traditional medicine in Sakarya province (Turkey) and antimicrobial activities of selected species. J Ethnopharmacol 95(2):287–296

    Article  PubMed  Google Scholar 

  • Verge MJ (1927) Les aspergilloses des oiseaux. Rec MM Vet 3:521–528

    Google Scholar 

  • Webber MA, Piddock LJV (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51(1):9–11

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD (2004) Tet X is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 279(50):52346–52352

    Article  CAS  PubMed  Google Scholar 

  • Yildirim AB, Karakas FP, Turker AU (2013) In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey. Asian Pac J Trop Med 6(8):616–624

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author is highly thankful to Dr. Md. Niamat Ali, Associate Professor, and Prof. Bashir A. Ganie for their valuable suggestions during his research. The author is highly thankful to the Editor of the book for the opportunity to contribute a chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganaie, H.A. (2019). Fungal Diseases of Animals: Symptoms and Their Cure by Natural Products. In: Gupta, A., Singh, N. (eds) Recent Developments in Fungal Diseases of Laboratory Animals. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-18586-2_5

Download citation

Publish with us

Policies and ethics