Skip to main content

Reverse-Auction-Based Competitive Order Assignment for Mobile Taxi-Hailing Systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11447))

Abstract

Mobile Taxi-Hailing (MTH) is one of the most attractive smartphone applications, through which passengers can reserve taxis ahead for their travels so that the taxi service’s efficiency can improve significantly. The taxi-hailing order assignment is an important component of MTH systems. Current MTH order assignment mechanisms fall short in flexibility and personalized pricing, resulting in an unsatisfactory service experience. To address this problem, we introduce a Competitive Order Assignment (COA) framework for the MTH systems. The COA framework mainly consists of the Multi-armed-bandit Automatic Valuation (MAV) mechanism and the Reverse-auction-based Order Assignment (ROA) mechanism. The taxis apply the MAV mechanism to automatically generate the transport service valuations for orders. The platform applies the ROA mechanism to complete each round of order assignment. Then, we analyze the online performance of MAV, and prove that ROA satisfies the properties of truthfulness and individual rationality. Finally, we also demonstrate the significant performances of MAV and ROA through extensive simulations on a real trace.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nyc taxi trips (2016). http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

  2. DMR, January 8. https://expandedramblings.com/index.php/uber-statistics/

  3. Agrawal, R.: Sample mean based index policies by \(o(\log n)\) regret for the multi-armed bandit problem. Adv. Appl. Probab. 27(4), 1054–1078 (1995)

    Article  MathSciNet  Google Scholar 

  4. Asghari, M., Deng, D., Shahabi, C., Demiryurek, U., Li, Y.: Price-aware real-time ride-sharing at scale: an auction-based approach. In: ACM SIGSPATIAL (2016)

    Google Scholar 

  5. Asghari, M., Shahabi, C.: An on-line truthful and individually rational pricing mechanism for ride-sharing. In: ACM SIGSPATIAL (2017)

    Google Scholar 

  6. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  Google Scholar 

  7. Chen, L., Zhong, Q., Xiao, X., Gao, Y., Jin, P., Jensen, C.S.: Price-and-time-aware dynamic ridesharing. In: IEEE ICDE (2018)

    Google Scholar 

  8. Chen, L., Gao, Y., Liu, Z., Xiao, X., Jensen, C.S., Zhu, Y.: PTrider: a price-and-time-aware ridesharing system. Proc. VLDB Endow. 11(12), 1938–1941 (2018)

    Article  Google Scholar 

  9. Gao, G., Xiao, M., Zhao, Z.: Optimal multi-taxi dispatch for mobile taxi-hailing systems. In: ICPP (2016)

    Google Scholar 

  10. Garg, N., Ranu, S.: Route recommendations for idle taxi drivers: find me the shortest route to a customer! In: ACM SIGKDD (2018)

    Google Scholar 

  11. Kang, S., Joo, C.: Low-complexity learning for dynamic spectrum access in multi-user multi-channel networks. In: IEEE INFOCOM (2018)

    Google Scholar 

  12. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics (NRL) 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  13. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 6(1), 4–22 (1985)

    Article  MathSciNet  Google Scholar 

  14. Liu, A., et al.: Privacy-preserving task assignment in spatial crowdsourcing. J. Comput. Sci. Technol. 32(5), 905–918 (2017)

    Article  MathSciNet  Google Scholar 

  15. Liu, A., Wang, W., Shang, S., Li, Q., Zhang, X.: Efficient task assignment in spatial crowdsourcing with worker and task privacy protection. GeoInformatica 22(2), 335–362 (2018)

    Article  Google Scholar 

  16. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MathSciNet  Google Scholar 

  17. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007)

    Book  Google Scholar 

  18. Tong, Y., Wang, L., Zhou, Z., Chen, L., Du, B., Ye, J.: Dynamic pricing in spatial crowdsourcing: a matching-based approach. In: ACM SIGMOD (2018)

    Google Scholar 

  19. Tran-Thanh, L., Stein, S., Rogers, A., Jennings, N.R.: Efficient crowdsourcing of unknown experts using bounded multi-armed bandits. AI 214, 89–111 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Vermorel, J., Mohri, M.: Multi-armed bandit algorithms and empirical evaluation. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 437–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096_42

    Chapter  Google Scholar 

  21. Xiao, M., et al.: SRA: secure reverse auction for task assignment in spatial crowdsourcing. In: IEEE TKDE, p. 1 (2019)

    Google Scholar 

  22. Xiao, M., Wu, J., Huang, L., Cheng, R., Wang, Y.: Online task assignment for crowdsensing in predictable mobile social networks. IEEE Trans. Mob. Comput. 16(8), 2306–2320 (2017)

    Article  Google Scholar 

  23. Zheng, H., Wu, J.: Online to offline business: urban taxi dispatching with passenger-driver matching stability. In: IEEE ICDCS (2017)

    Google Scholar 

Download references

Acknowledgment

This research was supported in part by National Natural Science Foundation of China (NSFC) (Grant No. 61872330, 61572336, 61572457, 61632016, 61379132, U1709217), NSF grants CNS 1757533, CNS 1629746, CNS 1564128, CNS 1449860, CNS 1461932, CNS 1460971, IIP 1439672, Natural Science Foundation of Jiangsu Province in China (Grant No. BK20131174, BK2009150), Anhui Initiative in Quantum Information Technologies (Grant No. AHY150300), and Natural Science Research Project of Jiangsu Higher Education Institution (No. 18KJA520010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjun Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, H., Xiao, M., Wu, J., Liu, A., An, B. (2019). Reverse-Auction-Based Competitive Order Assignment for Mobile Taxi-Hailing Systems. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds) Database Systems for Advanced Applications. DASFAA 2019. Lecture Notes in Computer Science(), vol 11447. Springer, Cham. https://doi.org/10.1007/978-3-030-18579-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18579-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18578-7

  • Online ISBN: 978-3-030-18579-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics