Skip to main content

Advances of Implicit Description Techniques in Modelling and Control of Switched Systems

  • Chapter
  • First Online:
Structural Methods in the Study of Complex Systems

Abstract

Our contribution is devoted to a constructive overview of the implicit system approach in modern control of switched dynamic models. We study a class of non-stationary autonomous switched systems and formally establish the existence of solution. We next incorporate the implicit systems approach into our consideration. At the beginning of the contribution, we also develop a specific system example that is used for illustrations of various system aspects that we consider. Our research involves among others a deep examination of the reachability property in the framework of the implicit system framework that we propose. Based on this methodology, we finally propose a resulting robust control design for the switched systems under consideration and the proposed control strategy is implemented in the context of the illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the case where there is no output equation \(y = C x\), we simply write \(\varSigma ^{imp}(E, A, B)\).

  2. 2.

    Geerts [18] considered the linear combinations of impulsive and smooth distributions, with \(\mu \) coordinates, denoted by \({\mathscr {C}}_{\mathrm {imp}}^{\mu }\), as the signal sets. The set \({\mathscr {C}}_{\mathrm {imp}}^{\mu }\) is a subalgebra and it can be decomposed as \({\mathscr {C}}_{\mathrm {p-imp}}^{\mu }\oplus \mathscr {C}_{\mathrm {sm}}^{\mu }\), where \({\mathscr {C}}_{\mathrm {p-imp}}^{\mu }\) and \({\mathscr {C}}_{\mathrm {sm}}^{\mu }\) denote the subalgebras of pure impulses and smooth distributions, respectively [41]. The unit element of this subalgebra is the Dirac delta distribution, \(\delta \). Any linear combination of \(\delta \) and its distributional derivatives \(\delta ^{(\ell )}\), \(\ell > 1\), is called impulsive.

  3. 3.

    \(E{x_{0}}\) stands for \(E{x_{0}}\delta \), \({x_{0}}\in {\mathscr {X}}_{d}\) being the initial condition, and pE x stands for \(\delta ^{(1)}*E{x}\) (\(*\) denotes convolution); if pE x is smooth and \(E\dot{x}\) stands for the distribution that can be identified with the ordinary derivative, \(E{\mathrm {d}{x}}/{\mathrm {d}{t}}\), then \(pE{x} = E\dot{x} + E{x_{0^{+}}}\).

  4. 4.

    We restrict our discussion to subspaces of finite-dimensional vector spaces. In [16] and in [2], these definitions are stated in the more general framework of closed sets of normed vector spaces.

  5. 5.

    Let us note that (7.31) implies that (cf. Fig. 7.2): \(E{{\mathscr {V}}}_{{{\mathscr {X}}}_{d}^{*}} + \mathrm {Im}\,{B} = \underline{{\mathscr {X}}}_{eq}\) and \({{\mathscr {V}}}_{{{\mathscr {X}}}_{d}^{*}} = {{\mathscr {X}}}_{d}\), hence (7.64) takes the form (7.71).

  6. 6.

    Recall that two representations are externally equivalent when the sets of all possible trajectories for their external signals (here u and y) are identical (see [37, 44, 45]).

  7. 7.

    Since Theorem 7.5 is satisfied, one can also assign the output dynamics.

  8. 8.

    This region is obtained from \(\det \left[ \begin{array}{ccc} {\mathrm {s}} &{} -1 &{} -1 \\ 0 &{} 0 &{} ({\mathrm {s}} + 1/{\tau })\\ \hline -{\alpha } &{} ({\beta }+2) &{} 1 \end{array}\right] = -(({\beta }+2){\mathrm {s}} - {\alpha })({\mathrm {s}} + 1/{\tau })\).

  9. 9.

    This region is obtained following the methodology of [42], namely, we solve two Lyapunov equations for the two cases: (i) \(\beta \ne -2\) and (ii) \(\alpha \ne 0\) (with \(\beta =-2\)), with a common positive definite matrix P.

References

  1. Armentano, V.A.: The pencil \(\left(sE-A\right)\) and controllability-observability for generalized linear systems: a geometric approach. SIAM J. Control Optim. 24(4), 616–638 (1986)

    MathSciNet  MATH  Google Scholar 

  2. Aubin, J.P., Frankowska, H.: Viability kernels of control systems. In: Byrnes, C.I., Kurzhanski, A.B. (eds.) Nonlinear Synthesis, no. 9 in Progress in Systems and Control Theory, Birkhäuser, Boston, pp. 12–33 (1991)

    Chapter  Google Scholar 

  3. Bernhard, P.: On singular implicit dynamical systems. SIAM J. Control Optim. 20(5), 612–633 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonilla, M., Malabre, M.: One side invertibility for implicit descriptions. In: 29th IEEE Conference on Decision and Control, pp. 3601–3602 (1990)

    Google Scholar 

  5. Bonilla, M., Malabre, M.: Variable structure systems via implicit descriptions. In: 1st European Control Conference, vol. 1, pp. 403–408 (1991)

    Google Scholar 

  6. Bonilla, M., Malabre, M.: External reachability (reachability with pole assignment by P.D. feedback) for implicit descriptions. Kybernetika 29(5), 449–510 (1993)

    Google Scholar 

  7. Bonilla, M., Malabre, M.: More about non square implicit descriptions for modelling and control. In: 39th IEEE Conference on Decision and Control, pp. 3642–3647 (2000)

    Google Scholar 

  8. Bonilla, M., Malabre, M.: On the control of linear systems having internal variations. Automatica 39, 1989–1996 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonilla, M., Lebret, G., Malabre, M.: Output dynamics assignment for implicit descriptions. Circ. Syst. Signal Process. 13(2–3), 349–359 (1994). Special issue on “Implicit and Robust Systems”

    Google Scholar 

  10. Bonilla, M., Pacheco, J., Malabre, M.: Almost rejection of internal structural variations in linear systems. In: 42nd IEEE Conference on Decision and Control, pp. 116–121 (2003)

    Google Scholar 

  11. Bonilla, M., Martínez, J.C., Pacheco, J., Malabre, M.: Matching a system behavior within a known set of models: a quadratic optimization based adaptive solution. Int. J. Adapt. Control Signal Process. 23, 882–906 (2009)

    Article  MATH  Google Scholar 

  12. Bonilla, M., Lebret, G., Loiseau, J.J., Malabre, M.: Simultaneous state and input reachability for linear time invariant systems. Linear Algebr. Appl. 439, 1425–1440 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bonilla, M., Malabre, M., Azhmyakov, V.: An implicit systems characterization of a class of impulsive linear switched control processes. Part 1: modeling. Nonlinear Anal. Hybrid Syst. 15, 157–170 (2015a)

    MathSciNet  MATH  Google Scholar 

  14. Bonilla, M., Malabre, M., Azhmyakov, V.: An implicit systems characterization of a class of impulsive linear switched control processes. Part 2: control. Nonlinear Anal. Hybrid Syst. 18, 15–32 (2015b)

    MathSciNet  MATH  Google Scholar 

  15. Bonilla, M., Malabre, M., Martınez-Garcıa, J.C.: On the descriptor variable observation of rectangular implicit representations, in the presence of column minimal indices blocks. IMA J. Math. Control Inf. 1–29 (2017). https://doi.org/10.1093/imamci/dnx020

    Article  MathSciNet  Google Scholar 

  16. Frankowska, H.: On the controllability and observability of implicit systems. Syst. Control Lett. 14, 219–225 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gantmacher, F.R.: The Theory of Matrices, vol. II. Chelsea, New York (1977)

    Google Scholar 

  18. Geerts, T.: Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case. Linear Algebr. Appl. 181, 111–130 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Geerts, T., Mehrmann, V.: Linear differential equations with constant coefficients: a distributional approach. Preprint 90–073 SFB 343, University of Bielefeld, Germany (1990)

    Google Scholar 

  20. Hautus, M.L.J.: The formal Laplace transform for smooth linear systems. In: Marchesini, G., Mitter, S.K. (eds.) Mathematical Systems Theory. Lecture Notes in Economics and Mathematical Systems (Systems Theory), vol. 131, pp. 29–47. Springer, Heidelberg (1976)

    Google Scholar 

  21. Hautus, M.L.J., Silverman, L.M.: System structure and singular control. Linear Algebr. Appl. 50, 369–402 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hou, M.: Controllability and elimination of impulsive modes in descriptor systems. IEEE Trans. Autom. Control AC 49(10), 1723–1727 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ishihara, J.Y., Terra, M.H.: Impulse controllability and observability of rectangular descriptor systems. IEEE Trans. Autom. Control AC 46(6), 991–994 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuijper, M.: First-order representations of linear systems. Ph.D. thesis, Katholieke Universiteit Brabant, Amsterdam (1992)

    Google Scholar 

  25. Lebret, G.: Contribution à l’Étude des Systémes Linéaires Généralisés: Approches Géométrique et Structurelle. Ph.D. thesis, Université de Nantes, France (1991)

    Google Scholar 

  26. Lebret, G., Loiseau, J.J.: Proportional and proportional-derivative canonical forms for descriptor systems with outputs. Automatica 30(5), 847–864 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lewis, F.L.: A survey of linear singular systems. Circ. Syst. Signal Process. 5(1), 3–36 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lewis, F.L.: A tutorial on the geometric analysis of linear time-invariant implicit systems. Automatica 28(1), 119–137 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liberzon, D.: Switching in Systems and Control. Systems and Control: Foundations and Applications. Birkhäuser, Boston, MA (2003)

    Book  MATH  Google Scholar 

  30. Malabre, M.: More geometry about singular systems. In: 26th IEEE Conference on Decision and Control, pp. 1138–1139 (1987)

    Google Scholar 

  31. Malabre, M.: Generalized linear systems, geometric and structural approaches. Linear Algebr. Appl. 122/123/124, 591–621 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Morse, A.S.: Structural invariants of linear multivariable systems. SIAM J. Control Optim. 11(3), 446–465 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  33. Narendra, K.S., Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commuting \({A}\)-matrices. IEEE Trans. Autom. Control 39, 2469–2471 (1994)

    MathSciNet  MATH  Google Scholar 

  34. Özçaldiran, K.: Control of Descriptor Systems. Ph.D. thesis, Georgia Institute of Technology, United States (1985)

    Google Scholar 

  35. Özçaldiran, K.: A geometric characterization of the reachable and controllable subspaces of descriptor systems. Circ. Syst. Signal Process. 5(1), 37–48 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Özçaldiran, K., Haliločlu, L.: Structural properties of singular systems. Kybernetika 29(6), 518–546 (1993)

    MathSciNet  MATH  Google Scholar 

  37. Polderman, J.W., Willems, J.C.: Introduction to Mathematical Systems Theory: A Behavioral Approach. Springer, New York (1998)

    Book  MATH  Google Scholar 

  38. Przyluski, K.M., Sosnowski, A.: Remarks on the theory of implicit linear continuous-time systems. Kybernetika 30(5), 507–515 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Rosenbrock, H.H.: State-Space and Multivariable Theory. Nelson, London (1970)

    Google Scholar 

  40. van der Schaft, A.J., Schumacher, H.: An Introduction to Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences, vol. 251. Springer, New York (2000)

    Google Scholar 

  41. Schwartz, L.: Theorie des Distributions. Hermann, Paris (1978)

    MATH  Google Scholar 

  42. Shorten, R.N., Narendra, K.S.: Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time-invariant systems. Int. J. Adapt. Control Signal Process. 16, 709–728 (2002)

    Article  MATH  Google Scholar 

  43. Verghese, G.C.: Further notes on singular descriptions. In: Joint Automatic Control Conference, vol. 18, p. 85, TA4 (1981)

    Google Scholar 

  44. Willems, J.C.: Input-output and state space representations of finite-dimensional linear time-invariant systems. Linear Algebr. Appl. 50, 581–608 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  45. Willems, J.C.: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Autom. Control 36(3), 259–264 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wong, K.T.: The eigenvalue problem \(\lambda Tx+Sx\). J. Differ. Equ. 1, 270–281 (1974)

    MathSciNet  MATH  Google Scholar 

  47. Wonham, W.M.: Linear Multivariable Control A Geom. Approach, 3rd edn. Springer, New York (1985)

    Book  Google Scholar 

Download references

Acknowledgements

This research was conducted in the framework of the regional programme “Atlanstic 2020, Research, Education and Innovation in Pays de la Loire”, supported by the French Region Pays de la Loire and the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Malabre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonilla Estrada, M., Malabre, M., Azhmyakov, V. (2020). Advances of Implicit Description Techniques in Modelling and Control of Switched Systems. In: Zattoni, E., Perdon, A., Conte, G. (eds) Structural Methods in the Study of Complex Systems. Lecture Notes in Control and Information Sciences, vol 482. Springer, Cham. https://doi.org/10.1007/978-3-030-18572-5_7

Download citation

Publish with us

Policies and ethics