Skip to main content

Stability and the Kleinian View of Geometry

  • Chapter
  • First Online:
  • 560 Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 482))

Abstract

Youla parametrization of stabilizing controllers is a fundamental result of control theory: starting from a special, double coprime, factorization of the plant provides a formula for the stabilizing controllers as a function of the elements of the set of stable systems. In this case the set of parameters is universal, i.e., does not depend on the plant but only the dimension of the signal spaces. Based on the geometric techniques introduced in our previous work this paper provides an alternative, geometry based parametrization. In contrast to the Youla case, this parametrization is coordinate free: it is based only on the knowledge of the plant and a single stabilizing controller. While the parameter set itself is not universal, its elements can be generated by a universal algorithm. Moreover, it is shown that on the parameters of the strongly stabilizing controllers a simple group structure can be defined. Besides its theoretical and educative value the presentation also provides a possible tool for the algorithmic development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, vol. 87. Springer (2004)

    Google Scholar 

  2. Basile, G., Marro, G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, Englewood Cliffs, New Jersey (1992)

    MATH  Google Scholar 

  3. Bendtsen, J., Stoustrup, J., Trangbaek, K.: Bumpless transfer between observer-based gain scheduled controllers. Int. J. Control. 78(7), 491–504 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bennett, M.: Affine and Projective Geometry. Wiley and Sons, New York (1995)

    Book  Google Scholar 

  5. Bertram, W.: Commutative and non-commutative parallelogram geometry: an experimental approach (2013). arXiv:1305.6851B

  6. Beutelspacher, A., Rosenbaum, U.: Projective Geometry: From Foundations to Applications. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  7. Blanchini, F., Miani, S., Mesquine, F.: A separation principle for linear switching systems and parametrization of all stabilizing controllers. IEEE Trans. Autom. Control 54(2), 279–292 (2009)

    Article  MathSciNet  Google Scholar 

  8. Chang, Y.J., Rasmussen, B.P.: Stable controller interpolation for LPV systems. In: American Control Conference 2008. Seattle, Washington (2008)

    Google Scholar 

  9. Conte, G., Perdon, A.M., Zattoni, E.: A geometric approach to the general autonomous regulator problem in the time-delay framework. Syst. Control. Lett. 61(4), 602–608 (2012)

    Article  MathSciNet  Google Scholar 

  10. Coxeter, H.: Projective Geometry. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  11. Falb, P.: Methods of Algebraic Geometry in Control Theory: Part II Multivariable Linear Systems and Projective Algebraic Geometry. Birkhäuser, Boston (1999)

    Book  Google Scholar 

  12. Feintuch, A.: Robust Control Theory in Hilbert Space, Applied Mathematical Sciences, vol. 130. Springer, New York (1998)

    Book  Google Scholar 

  13. Gümüssoy, S., Özbay, H.: Sensitivity minimization by strongly stabilizing controllers for a class of unstable time-delay systems. IEEE Trans. Autom. Control. 54(3), 590–595 (2009)

    Article  MathSciNet  Google Scholar 

  14. Gündeş, A.N., Özbay, H.: Strong stabilization of a class of MIMO systems. IEEE Trans. Autom. Control. 56(6), 1445–1452 (2011)

    Article  MathSciNet  Google Scholar 

  15. Hencey, B.M., Alleyne, A.G.: Robust controller interpolation via parameterization. In: ASME Dynamic Systems and Control Conference, ASME, pp. 1237–1244 (2008)

    Google Scholar 

  16. Hencey, B.M., Alleyne, A.G.: A robust controller interpolation design technique. IEEE Trans. Control. Syst. Technol. 18(1), 1–10 (2010)

    Article  Google Scholar 

  17. Hespanha, J.P., Morse, A.S.: Switching between stabilizing controllers. Automatica 38(11), 1905–1917 (2002)

    Article  MathSciNet  Google Scholar 

  18. Isidori, A.: Nonlinear Control Systems. Springer (1989)

    Google Scholar 

  19. Jurdjevic, V.: Geometric Control Theory. Cambridge University Press (1997)

    Google Scholar 

  20. Kevickzy, L., Bányász, C.: Two-Degree-of-Freedom Control Systems: The Youla Parameterization Approach. Academic Press (2015)

    Google Scholar 

  21. Khargonekar, P.P., Pascoal, A.M., Ravi, R.: Strong, simultaneous, and reliable stabilization of finite-dimensional linear time-varying plants. IEEE Trans. Autom. Control. 33(12), 1158–1161 (1988)

    Article  MathSciNet  Google Scholar 

  22. Khong, S.: Robust stability analysis of linear time-varying feedback systems. Ph.D. Thesis, Department of Electrical and Electronic Engineering, The University of Melbourne (2011)

    Google Scholar 

  23. Kučera, V.: Stability of discrete linear feedback systems. IFAC Proc. Vol. 8(1, Part 1), 573–578 (1975)

    Article  Google Scholar 

  24. Mirkin, L.: Intermittent redesign of analog controllers via the Youla parameter. IEEE Trans. Autom. Control. 62(4), 1838–1851 (2017)

    Article  MathSciNet  Google Scholar 

  25. Moog, C.H., Perdon, A.M., Conte, G.: Canonical decomposition of non-linear systems. Automatica 33(8), 1561–1565 (1997)

    Article  MathSciNet  Google Scholar 

  26. Niemann, H., Stoustrup, J.: An architecture for implementation of multivariable controllers. In: American Control Conference 1999, pp. 4029–4033. San Diego, California (1999a)

    Google Scholar 

  27. Niemann, H., Stoustrup, J.: Gain scheduling using the Youla parameterization. In: 38th IEEE Conference on Decision and Control, pp. 2306–2311. Arizona, Phoenix (1999b)

    Google Scholar 

  28. Quadrat, A.: The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. Part II: Internal stabilization. SIAM J. Control. Optim. 42(1), 300–320 (2003)

    Article  MathSciNet  Google Scholar 

  29. Quadrat, A.: On a general structure of the stabilizing controllers based on a stable range. SIAM J. Control. Optim. 24(6), 2264–2285 (2004)

    Article  MathSciNet  Google Scholar 

  30. Richter-Gebert, J.: Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry. Springer, Berlin Heidelberg (2011)

    Book  Google Scholar 

  31. Shin, J.Y., Balas, G., Kaya, M.A.: Blending methodology of linear parameter varying control synthesis of F-16 aircraft system. J. Guid. Control. Dyn. 25(6), 1040–1048 (2002)

    Article  Google Scholar 

  32. Stoustrup, J.: Plug & play control: control technology towards new challenges. Eur. J. Control. 15(3–4), 311–330 (2009)

    Article  MathSciNet  Google Scholar 

  33. Szabó, Z., Bokor, J.: Controller blending–a geometric approach. In: European Control Conference 2015, pp. 3108–3113. Linz, Austria (2015)

    Google Scholar 

  34. Szabó, Z., Bokor, J.: Jordan algebra and control theory. In: European Control Conference 2016, pp. 1389–1394. Aalborg, Denmark (2016)

    Google Scholar 

  35. Szabó, Z., Biró, Z., Bokor, J.: Quadratic separators in the input-output setting. In: 52nd IEEE Conference on Decision and Control, pp. 1756–1761. Florence, Italy (2013)

    Google Scholar 

  36. Szabó, Z., Bokor, J., Vámos, T.: A hyperbolic view on robust control. IFAC Proc. Vol. 47(3), 718–723 (2014)

    Article  Google Scholar 

  37. Trangbaek, K., Stoustrup, J., Bendtsen, J.: Stable controller reconfiguration through terminal connections. IFAC Proc. Vol. 41(2), 331–335 (2008)

    Article  Google Scholar 

  38. Vidyasagar, M.: Control System Synthesis: A Factorization Approach. MIT Press, Cambridge (1985)

    MATH  Google Scholar 

  39. Wonham, W.M.: Linear Multivariable Control: A Geometric Approach. Springer, New York (1985)

    Book  Google Scholar 

  40. Xie, W., Eisaka, T.: Design of LPV control systems based on Youla parameterization. IEEE Proc.Control. Theory Appl. 151(4), 465–472 (2004)

    Article  Google Scholar 

  41. Youla, D., Jabr, H., Bongiorno, J.: Modern Wiener-Hopf design of optimal controllers-Part II: the multivariable case. IEEE Trans. Autom. Control. 21(3), 319–338 (1976)

    Article  Google Scholar 

  42. Zhou, K., Doyle, J.C.: Essentials of Robust Control. Prentice Hall (1999)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Tibor Vámos for the inspirative and influential discussions that led us to start the research on the relation between geometry and control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Szabó .

Editor information

Editors and Affiliations

Appendix

Appendix

A state space realization for the sum of systems is given by

$$\begin{aligned} \left[ \begin{array}{c|c}A_1 &{} B_1 \\ \hline C_1 &{} D_1 \end{array}\right] + \left[ \begin{array}{c|c}A_2 &{} B_2 \\ \hline C_2 &{} D_2 \end{array}\right] = \left[ \begin{array}{cc|c}A_1 &{} 0 &{} B_1 \\ 0 &{} A_2 &{} B_2 \\ \hline C_1 &{} C_2 &{} D_1+D_2 \end{array}\right] , \end{aligned}$$
(2.41)

while the product of the systems can be expressed as:

$$\begin{aligned} \left[ \begin{array}{c|c}A_1 &{} B_1 \\ \hline C_1 &{} D_1 \end{array}\right] \left[ \begin{array}{c|c}A_2 &{} B_2 \\ \hline C_2 &{} D_2 \end{array}\right] = \left[ \begin{array}{cc|c}A_1 &{} B_1C_2 &{} B_1D_2 \\ 0 &{} A_2 &{} B_2 \\ \hline C_1 &{} D_1C_2 &{} D_1D_2 \end{array}\right] . \end{aligned}$$
(2.42)

Note that these realizations are not necessarily minimal. If D is invertible then a realization of the inverse system is

$$\begin{aligned} \left[ \begin{array}{c|c}A &{} B \\ \hline C &{} D \end{array}\right] ^{-1}= \left[ \begin{array}{c|c}A-BD^{-1}C &{} -BD^{-1} \\ \hline D^{-1}C &{} D^{-1} \end{array}\right] . \end{aligned}$$
(2.43)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szabó, Z., Bokor, J. (2020). Stability and the Kleinian View of Geometry. In: Zattoni, E., Perdon, A., Conte, G. (eds) Structural Methods in the Study of Complex Systems. Lecture Notes in Control and Information Sciences, vol 482. Springer, Cham. https://doi.org/10.1007/978-3-030-18572-5_2

Download citation

Publish with us

Policies and ethics