Skip to main content

Complex Systems and Control: The Paradigms of Structure Evolving Systems and System of Systems

  • Chapter
  • First Online:
Structural Methods in the Study of Complex Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 482))

Abstract

This chapter deals with two rather new notions of complexity emerging in Engineering Systems, reviews existing approaches and results and introduces a number of open problems defining a research agenda in the field. We examine these notions based on the fundamentals of a systemic framework and from the perspective of Systems and Control Theory. The two new major paradigms expressing forms of engineering complexity which have recently emerged are the new paradigms of Structure Evolving Systems (SES) and Systems of Systems (SoS). The origin and types of complexity linked to each one of these families are considered, and an effort is made to relate these new types of complexity to engineering problems and link the emerging open issues to problems and techniques from Systems and Control Theory. The engineering areas introducing these new types of complexity are linked to the problems of Integrated System Design and Integrated System Operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso, E.: Actions and agents. In: Frankish, K., Ramsey, W.M. (eds.) The Cambridge Handbook of Artificial Intelligence, chap 5. Cambridge University Press (2013)

    Google Scholar 

  2. Antoulas, A.: On recursiveness and related topics in linear systems. IEEE Trans. Autom. Control 31(12), 1121–1135 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antoulas, A.C., Bishop, R.H.: Continued-fraction decomposition of linear systems in the state spaces. Syst. Control Lett. 9(1), 43–53 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antoulas, A.C., Matsūo, T., Yamamoto, Y.: Linear deterministic realization theory. In: Mathematical System Theory, pp. 191–212. Springer (1991)

    Google Scholar 

  5. Antsaklis, P., Kohn, W., Nerode, A., Sastry, S.: Hybrid Systems II, vol. 999. Springer Science & Business Media (1995)

    Google Scholar 

  6. Antsaklis, P.J., Michel, A.N.: Linear Systems. McGraw-Hill, New York (1997)

    Google Scholar 

  7. Aplevich, J.D.: Implicit Linear Systems. Lecture Notes in Control and Information Science, vol. 152. Springer, Berlin (1991)

    Google Scholar 

  8. Backx, A.: Engineering aspects of industrial applications of model-based control techniques and system theory. In: Essays on Control. Springer, pp 79–109 (1993)

    Google Scholar 

  9. Bar-Yam, Y.: Unifying Themes In Complex Systems, Volume 1: Proceedings of the First International Conference On Complex Systems. CRC Press (1997)

    Google Scholar 

  10. Bosgra, O.: On parametrizations for the minimal partial realization problem. Syst. Control Lett. 3(4), 181–187 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Byrnes, C.I., Lindquist, A.: The stability and instability of partial realizations. Syst. Control Lett. 2(2), 99–105 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Vries, S., Vohra, R.V.: Combinatorial auctions: A survey. INFORMS J. Comput. 15(3), 284–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Descusse, J., Lafay, J., Malabre, M.: Solution to Morgan’s problem. IEEE Trans. Autom. Control 33(8), 732–739 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Desoer, C.A., Callier, F.M.: Multivariable Feedback Systems. Springer, New York (1982)

    Google Scholar 

  15. Douglas, J.M.: Conceptual Design of Chemical Processes, vol. 1110. McGraw-Hill, New York (1988)

    Google Scholar 

  16. Dunbar, W.B., Murray, R.M.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eykhoff, P.: Finkelstein, L. (ed.) Concise Encyclopedia of Measurement & Instrumentation, vol. 7, pp. 137–142. Pergamon Press (1994)

    Google Scholar 

  18. Forney Jr., G.D.: Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J. Control 13(3), 493–520 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gantmacher, F.R.: The Theory of Matrices, vol. 2. Chelsea, New York (1959)

    Google Scholar 

  20. Grewal, M., Glover, K.: Identifiability of linear and nonlinear dynamical systems. IEEE Trans. Autom. Control 21(6), 833–837 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grigoriou, G.: Structure evolving systems: model structure evolution and system properties. Ph.D. thesis, City University (2012)

    Google Scholar 

  22. Hessami, A.G., Karcanias, N.: Integration of operations in process systems: complexity and emergent properties. In: 2011 IEEE International Systems Conference (SysCon), IEEE, pp. 466–471 (2011)

    Google Scholar 

  23. Jamshidi, M.: System of Systems Engineering: Innovations for the 21st Century, vol. 58. Wiley (2008)

    Google Scholar 

  24. Kaila, V.R., Annila, A.: Natural selection for least action. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. R. Soc. 464, 3055–3070 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kalman, R.: On partial realizations, transfer functions and canonical forms. Acta Polytech. Scand. 31, 9–32 (1979)

    MathSciNet  MATH  Google Scholar 

  26. Karampetakis, N., Pugh, A., Vardulakis, A.: Equivalence transformations of rational matrices and applications. Int. J. Control 59(4), 1001–1020 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karcanias, N.: Global process instrumentation-Issues and problems of a system and control theory framework. Measurement 14(1), 103–113 (1994)

    Article  Google Scholar 

  28. Karcanias, N.: Integrated process design: a generic control theory/design based framework. Comput. Ind. 26(3), 291–301 (1995)

    Article  Google Scholar 

  29. Karcanias, N.: Control problems in global process instrumentation: a structural approach. Comput. Chem. Eng. 20, S1101–S1106 (1996)

    Article  Google Scholar 

  30. Karcanias, N.: Multivariable poles and zeros. Control Syst. Robot. Autom. (2002)

    Google Scholar 

  31. Karcanias, N.: System concepts for general processes: specification of a new framework. Systems and Control Centre Research Report (2004)

    Google Scholar 

  32. Karcanias, N.: Structure evolving systems and control in integrated design. Ann. Rev. Control 32(2), 161–182 (2008)

    Article  Google Scholar 

  33. Karcanias, N.: Systems of systems: a control theoretic view. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, pp. 1732–1737 (2013)

    Google Scholar 

  34. Karcanias, N., Giannakopoulos, C.: Grassmann invariants, almost zeros and the determinantal zero, pole assignment problems of linear multivariable systems. Int. J. Control 40(4), 673–698 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Karcanias, N., Giannakopoulos, C.: Necessary and sufficient conditions for zero assignment by constant squaring down. Linear Algebr. Appl. 122, 415–446 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Karcanias, N., Hayton, G.: Generalised autonomous dynamical systems, algebraic duality and geometric theory. IFAC Proc. Vol. 14(2), 289–294 (1981)

    Article  MATH  Google Scholar 

  37. Karcanias, N., Hessami, A.G.: Complexity and the notion of system of systems: part (i): general systems and complexity. In: World Automation Congress (WAC), 2010, IEEE, pp. 1–7 (2010)

    Google Scholar 

  38. Karcanias, N., Hessami, A.G.: System of systems and emergence part 2: synergetic effects and emergence. In: 2011 Fourth International Conference on Emerging Trends in Engineering & Technology, IEEE, pp. 33–38 (2011)

    Google Scholar 

  39. Karcanias, N., Sagianos, E.: Small numbers, induced model nesting and system properties. Systems and Control Research Report, School of Engineering and Mathematics, City University (2008) (Sy&Co SEMS res rep 06-08/01)

    Google Scholar 

  40. Karcanias, N., Vafiadis, K.: Effective transfer function models by input, output variables reduction. IFAC Proc. Vol. 34(13), 59–64 (2001)

    Article  Google Scholar 

  41. Karcanias, N., Vafiadis, K.: Model orientation and well conditioning of system models: system and control issues. IFAC Proc. Vol. 35(1), 315–320 (2002)

    Article  Google Scholar 

  42. Karcanias, N., Sagianos, E., Milonidis, E.: Structured transfer function matrices and integer matrices: the computation of the generic McMillan degree and infinite zero structure. Int. J. Control 80(9), 1404–1420 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kouvaritakis, B., MacFarlane, A.: Geometric approach to analysis and synthesis of system zeros. Part 1. Square systems. Int. J. Control 23(2), 149–166

    Article  MathSciNet  MATH  Google Scholar 

  44. Leventides, J., Karcanias, N.: Structured squaring down and zero assignment. Int. J. Control 81(2), 294–306 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lewis, F.L.: Optimal Estimation: with an Introduction to Stochastic Control Theory. Wiley, New York (1986)

    Google Scholar 

  46. Lewis, F.L.: A tutorial on the geometric analysis of linear time-invariant implicit systems. Automatica 28(1), 119–137 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ljung, L.: System Identification: Theory for the User. Prentice-Hall (1987)

    Google Scholar 

  48. Loiseau, J.J., Mondié, S., Zaballa, I., Zagalak, P.: Assigning the Kronecker invariants of a matrix pencil by row or column completions. Linear Algebr. Appl. 278(1–3), 327–336 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  49. MacFarlane, A.G.: Information, knowledge and control. In: Essays on Control; Perspectives in Theory and its Applications, Birkhauser, Berlin (1993)

    Google Scholar 

  50. Maier, M.W.: Architecting principles for systems-of-systems. Syst. Eng. J. Int. Counc. Syst. Eng. 1(4), 267–284 (1998)

    Google Scholar 

  51. Manthorpe, W.H.: The emerging joint system of systems: a systems engineering challenge and opportunity for APL. Johns Hopkins APL Tech. Dig. 17(3), 305 (1996)

    Google Scholar 

  52. Mesarovic, M.D., Takahara, Y.: General Systems Theory: Mathematical Foundations, vol. 113. Academic Press (1974)

    Google Scholar 

  53. Mesarovic, M.D., Macko, D., Takahara, Y.: Theory of Hierarchical, Multilevel, Systems, vol. 68. Elsevier (1970)

    Google Scholar 

  54. Milias-Argeitis, A., Summers, S., Stewart-Ornstein, J., Zuleta, I., Pincus, D., El-Samad, H., Khammash, M., Lygeros, J.: In silico feedback for in vivo regulation of a gene expression circuit. Nat. Biotechn. 29(12), 1114 (2011)

    Article  Google Scholar 

  55. Morari, M., Arkun, Y., Stephanopoulos, G.: Studies in the synthesis of control structures for chemical processes: part I: formulation of the problem. Process decomposition and the classification of the control tasks. Analysis of the optimizing control structures. AIChE J. 26(2), 220–232 (1980)

    Article  MathSciNet  Google Scholar 

  56. Nourian, M., Caines, P.E., Malhame, R.P., Huang, M.: Nash, social and centralized solutions to consensus problems via mean field control theory. IEEE Trans. Autom. Control 58(3), 639–653 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Perkins, J.D.: Interactions Between Process Design and Process Control. Elsevier (2014)

    Google Scholar 

  58. Rijnsdorp, J.E.: Integrated Process Control and Automation. Elsevier Science Publishers (1991)

    Google Scholar 

  59. Rosenbrock, H., Rowe, A.: Allocation of poles and zeros. Proc. Inst. Electr. Eng. IET 117, 1879–1886 (1970)

    Article  MathSciNet  Google Scholar 

  60. Rosenbrock, H.H.: State-Space and Multivariable Theory. Nelson (1970)

    Google Scholar 

  61. Saberi, A., Sannuti, P.: Squaring down of non-strictly proper systems. Int. J. Control 51(3), 621–629 (1990)

    Article  MATH  Google Scholar 

  62. van der Schaft, A., Jeltsema, D., et al.: Port-Hamiltonian systems theory: an introductory overview. In: Foundations and Trends® in Systems and Control 1(2–3), 173–378 (2014)

    Article  Google Scholar 

  63. SESDIP: Structural evaluation of synthesis of distributed industrial processes, p. 8924. Technical report, ESPRIT III Basic research Project (1996)

    Google Scholar 

  64. Smith, M.C.: Synthesis of mechanical networks: the inerter. In: Proceedings of the 41st IEEE Conference on Decision and Control, 2002, IEEE, vol. 2, pp. 1657–1662 (2002)

    Google Scholar 

  65. Tenner, A.R., DeToro, I.J.: Process Redesign: The Implementation Guide for Managers. Addison-Wesley Publishing (1996)

    Google Scholar 

  66. Tether, A.: Construction of minimal linear state-variable models from finite input-output data. IEEE Trans. Autom. Control 15(4), 427–436 (1970)

    Article  MathSciNet  Google Scholar 

  67. Van Brussel, H., Bongaerts, L., Wyns, J., Valckenaers, P., Van Ginderachter, T.: A conceptual framework for holonic manufacturing: identification of manufacturing holons. J. Manuf. Syst. 18(1), 35–52 (1999)

    Article  Google Scholar 

  68. Voos, H.: Resource allocation in continuous production using market-based multi-agent systems. In: 2007 5th IEEE International Conference on Industrial Informatics, IEEE, vol. 2, pp. 1085–1090 (2007)

    Google Scholar 

  69. Willems, J.C.: Models for dynamics. In: Dynamics Reported, pp. 171–269. Springer (1989)

    Google Scholar 

  70. Willems, J.C.: On interconnections, control and feedback. IEEE Trans. Autom.control 42(3), 326–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  71. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicos Karcanias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karcanias, N., Livada, M. (2020). Complex Systems and Control: The Paradigms of Structure Evolving Systems and System of Systems. In: Zattoni, E., Perdon, A., Conte, G. (eds) Structural Methods in the Study of Complex Systems. Lecture Notes in Control and Information Sciences, vol 482. Springer, Cham. https://doi.org/10.1007/978-3-030-18572-5_1

Download citation

Publish with us

Policies and ethics