An Introduction to Design Cybernetics

  • Thomas FischerEmail author
  • Christiane M. Herr
Part of the Design Research Foundations book series (DERF)


Since it ascended in the mid-twentieth century on the basis of technical and scientific advances made during World War II, cybernetics has influenced design theory and research. It was appreciated by its originators primarily as a theoretical framework and as a common language to bridge disciplinary boundaries, but soon found more prominent applications in goal-oriented control engineering. Since around 1970, it developed a reflective, more philosophical, and less control-focused perspective referred to as second-order cybernetics. This perspective recognises circular causality, non-determinism, the subjective observer and other concepts avoided by natural science. In this way, it offers an approach to self-organising systems that negotiate their own goals in open-ended processes – in other words: design. As an introduction to design cybernetics, this chapter outlines the development of cybernetics from a technical engineering discipline to a design-philosophical perspective.


Cybernetics ⋅ Control ⋅ Communication ⋅ Design ⋅ History 


  1. 1.
    Ashby, W. R. (1952). Journal 17, Barnwood House, Gloucester. Available at: Accessed 19 Jan 2019.
  2. 2.
    Ashby, W. R. (1954). Design for a brain. New York: Wiley.CrossRefGoogle Scholar
  3. 3.
    Ashby, W. R. (1956). An introduction to cybernetics. New York: St. Martin’s Press.CrossRefGoogle Scholar
  4. 4.
    Bateson, G. (1972). Steps to an ecology of mind. New York: Ballantine Books.Google Scholar
  5. 5.
    Bateson, G. (1979). Mind and nature. A necessary unity. New York: E. P. Dutton.Google Scholar
  6. 6.
    Blackman, R. B., Bode, H. W., & Shannon, C. E. (1946). Data smoothing and prediction in firecontrol systems. In Summary Technical Report, Div. 7, National Defense Research Committee, Vol. 1, Gunfire Control (pp. 71–159, 166–167). Washington, DC: National Defense Research Committee.Google Scholar
  7. 7.
    Beer, S., Blohm, H., & Suzuki, D. (1985). Pebbles to computers. The thread. New York: Oxford University Press.Google Scholar
  8. 8.
    Churchman, C. W. (1979). The systems approach. Revised and updated. New York: Dell.Google Scholar
  9. 9.
    Conway, F., & Siegelman, J. (2005). Dark hero of the information age. In search of Norbert Wiener the father of cybernetics. New York: Basic Books.Google Scholar
  10. 10.
    Cross, N. (1977). The automated architect. London: Pion.Google Scholar
  11. 11.
    Cross, N. (2007). Forty years of design research. Design Studies, 28(1), 1–4.CrossRefGoogle Scholar
  12. 12.
    Curtis, A. (2011). The use and abuse of vegetational concepts. All watched over by machines of loving grace, Episode 2. London: BBC. Available at: Accessed 19 Jan 2019.Google Scholar
  13. 13.
    Dent, E. B., & Umpleby, S. P. (1998). Underlying assumptions of several traditions in system theory and cybernetics. In R. Trappl (Ed.), Cybernetics and systems’98 (pp. 513–518). Vienna: Austrian Society for Cybernetic Studies.Google Scholar
  14. 14.
    Design Council. (2007). Design council eleven lessons. Managing design in eleven global brands. A study of the design process. London: Design Council.Google Scholar
  15. 15.
    Dubberly, H. (1995). Managing complex design projects. Communication Arts 30–36.
  16. 16.
    Fantini van Ditmar, D., & Glanville, R. (2013). Listening: Proceedings of the ASC conference 2011. Cybernetics & Human Knowing, 20(1/2), 5–11.Google Scholar
  17. 17.
    Fischer, T. (2013). Enigmatic mechanisms in defense of the capability to have new ideas. Kybernetes, 42(9/10), 1374–1386.CrossRefGoogle Scholar
  18. 18.
    Fischer, T. (2015). Wiener’s prefiguring of a cybernetic design theory. IEEE Technology and Society Magazine, 34(3), 52–59.CrossRefGoogle Scholar
  19. 19.
    Fischer, T. (2015). Designing together. Cybernetics & Human Knowing, 22(2/3), 127–140.Google Scholar
  20. 20.
    Fischer, T. (2019). Transcomputability, (Glanville’s corollary of) Ashby’s law of requisite variety, and epistemic processes. Kybernetes, 48(4), 793–804.CrossRefGoogle Scholar
  21. 21.
    Fischer, T., & Richards, L. D. (2017). From goal-oriented to constraint-oriented design: The cybernetic intersection of design theory and systems theory. Leonardo, 50(1), 36–41.CrossRefGoogle Scholar
  22. 22.
    Fuller, R. B. (1968). Operating manual for spaceship Earth. New York: Pocket Books.Google Scholar
  23. 23.
    Gage, S. (2007). The boat/helmsman. Technoetic Arts: A Journal of Speculative Research, 5(1), 15–24.CrossRefGoogle Scholar
  24. 24.
    Galison, P. (1994). The ontology of the enemy: Norbert Wiener and the cybernetic vision. Critical Inquiry, 21(1), 228–266.CrossRefGoogle Scholar
  25. 25.
    Glanville, R. (1982). Inside every white box there are two black boxes trying to get out. Behavioral Science, 27(1), 1–11.CrossRefGoogle Scholar
  26. 26.
    Glanville, R. (1994). Variety in design. Systems Research, 11(3), 95–103.CrossRefGoogle Scholar
  27. 27.
    Glanville, R. (2002). On being out of control. Available at: Accessed 19 Jan 2019.Google Scholar
  28. 28.
    Glanville, R. (1996). Communication without coding. Modern Language Notes, 111(3), 441–462.Google Scholar
  29. 29.
    Glanville, R. (1997). A ship without a rudder. In R. Glanville & G. de Zeeuw (Eds.), Problems of excavating cybernetics and systems (pp. 131–142). Southsea: BKS+. Available at: Accessed 19 Jan 2019.Google Scholar
  30. 30.
    Glanville, R. (1997). The value when cybernetics is added to CAAD. In N. Koenraad et al. (Eds.), The Added Value of Computer Aided Design. AVOCAAD First International Conference (pp. 39–56). Brussels: HWK Sint-Lucas.Google Scholar
  31. 31.
    Glanville, R. (1999). Researching design and designing research. Design Issues, 15(2), 80–91.CrossRefGoogle Scholar
  32. 32.
    Glanville, R. (2000). The value of being unmanageable: Variety and creativity in cyberspace. In H. Eichmann, J. Hochgerner, & F. Nahrada (Eds.), Netzwerke (pp. 27–40). Vienna: Falter Verlag.Google Scholar
  33. 33.
    Glanville, R. (2003). Machines of wonder and elephants that float through air: A valedictory understanding of understanding understanding. Cybernetics & Human Knowing, 10(3/4), 91–101.Google Scholar
  34. 34.
    Glanville, R. (2004). The purpose of second-order cybernetics. Kybernetes, 33(9/10), 1379–1386.CrossRefGoogle Scholar
  35. 35.
    Glanville, R. (2007). Grounding difference. In A. Müller & K. H. Müller (Eds.), An unfinished revolution? Heinz von Foerster and the biological computer laboratory 1958–1976 (pp. 361–406). Vienna: edition echoraum.Google Scholar
  36. 36.
    Glanville, R. (2007). Designing complexity. Performance Improvement Quarterly, 20(2), 75–96.CrossRefGoogle Scholar
  37. 37.
    Glanville, R. (2009). The black boox Vol. III. 39 steps. Vienna: edition echoraum.Google Scholar
  38. 38.
    Glanville, R. (2012). Second order cybernetics. The black boox – Vol. I. Cybernetic circles (pp. 175–207). Vienna: edition echoraum. Previously published In F. Parra-Luna (Ed.), Encyclopedia of life support systems, systems science and cybernetics Vol. III. Oxford: EoLSS Publishers. Available at: Accessed 19 Jan 2019.
  39. 39.
    Glanville, R. (2012). Radical constructivism = second-order cybernetics. Cybernetics & Human Knowing, 19(4), 27–42.Google Scholar
  40. 40.
    Goel, V. (1995). Sketches of thought. Cambridge: MIT Press.Google Scholar
  41. 41.
    Goldschmidt, G. (1991). The dialectics of sketching. Creativity Research Journal, 4(2), 123–143.CrossRefGoogle Scholar
  42. 42.
    Heims, S. J. (1980). John von Neumann and Norbert Wiener. From mathematics to the technologies of life and death. Cambridge: MIT Press.Google Scholar
  43. 43.
    Herr, C. M., & Fischer, T. (2013). Systems for showing and repurposing: A second-order cybernetic reflection on some cellular automata projects. Journal of Mathematics and System Science, 3(4), 201–216.Google Scholar
  44. 44.
    Heylighen, F., & Joslyn, C. (2001). Cybernetics and second-order cybernetics. In R. A. Meyers (Ed.), Encyclopedia of physical science & technology (3rd ed.). New York: Academic.Google Scholar
  45. 45.
    Jones, J. C. (Ed.). (1992). Design methods. New York: Van Nostrand Reinhold.Google Scholar
  46. 46.
    Kline, R. R. (2015). The cybernetics moment. Or why we call our age the information age. Baltimore: Johns Hopkins University Press.Google Scholar
  47. 47.
    Lawson, B. (2005). How designers think (4th ed.). Amsterdam: Architectural Press.Google Scholar
  48. 48.
    Lynn, S. (2001). The dream of reality. Heinz von Foerster’s constructivism (2nd ed.). New York: Springer.Google Scholar
  49. 49.
    Maruyama, M. (1963). The second cybernetics: Deviation-amplifying mutual causal processes. American Scientist, 5(2), 164–179.Google Scholar
  50. 50.
    Macintyre, B. (2007). Agent zigzag. A true story of Nazi espionage, love and betrayal. New York: Harmony Books.Google Scholar
  51. 51.
    Mead, M. (1968). Cybernetics of cybernetics. In H. von Foerster, J. D. White, L. J. Peterson, & J. K. Russell (Eds.), Purposive systems (pp. 1–11). New York: Spartan.Google Scholar
  52. 52.
    Müller, A. (2007). A brief history of the BCL: Heinz von Foerster and the biological computer laboratory. In A. Müller & K. H. Müller (Eds.), An unfinished revolution? Heinz von Foerster and the Biological Computer Laboratory/BCL, 1958–1976 (pp. 277–302). Vienna: edition echoraum.Google Scholar
  53. 53.
    Pask, G. (1961). An approach to cybernetics. London: Hutchinson & Co.Google Scholar
  54. 54.
    Pask, G. (1976). Conversation theory. Applications in education and epistemology. Amsterdam: Elsevier.Google Scholar
  55. 55.
    Pias, K. (2003). Cybernetics | the Macy-conferences 1946–1953. Zürich-Berlin: Diaphanes.Google Scholar
  56. 56.
    Pickering, A. (2011). The cybernetic brain: Sketches of another future. Chicago: University of Chicago Press.Google Scholar
  57. 57.
    Pörksen, B. (2004). The certainty of uncertainty. Exeter: Imprint Academic.Google Scholar
  58. 58.
    Protzen, J.-P., & Harris, D. J. (2010). The universe of design: Horst Rittel’s theories of design and planning. London: Routledge.Google Scholar
  59. 59.
    Rid, T. (2016). Rise of the machines. A cybernetic history. New York: Norton.Google Scholar
  60. 60.
    Rittel, H. W. J. (1972). On the planning crisis: Systems analysis of the ‘first and second generations’. Bedrifts Økonomen, 8, 390–396.Google Scholar
  61. 61.
    Rittel, H. W. J. (1984). Second-generation design methods. In N. Cross (Ed.), Developments in design methodology (pp. 317–327). Chichester: Wiley.Google Scholar
  62. 62.
    Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2), 155–169.CrossRefGoogle Scholar
  63. 63.
    Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. Philosophy of Science, 10, 18–24.CrossRefGoogle Scholar
  64. 64.
    Scott, B. (2001). Gordon Pask’s conversation theory: A domain independent constructivist model of human knowing. Foundations of Science, 6(4), 343–360.CrossRefGoogle Scholar
  65. 65.
    Schön, D. (1983). The reflective practitioner. How professionals think in action. New York: Basic Books.Google Scholar
  66. 66.
    Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3/4), 379–423, 623–656.CrossRefGoogle Scholar
  67. 67.
    Silverman, S. (2005). The United States. In B. Fredrik, A. Gingrich, R. Parkin, & S. Silverman (Eds.), One discipline, four ways: British, German, French, and American anthropology (pp. 255–347). Chicago: University of Chicago Press.Google Scholar
  68. 68.
    Simon, H. A. (1996). Sciences of the artificial (3rd ed.). Cambridge: MIT Press.Google Scholar
  69. 69.
    Snodgrass, A., & Coyne, R. (2006). Interpretation in architecture. London: Routledge.Google Scholar
  70. 70.
    Thornley, D. G., & Jones, J. C. (Eds.). (1963). Conference on design methods. Oxford: Pergamon Press.Google Scholar
  71. 71.
    Turner, F. (2012). The Family of Man and the politics of attention in Cold War America. Public Culture, 24(1), 55–84.CrossRefGoogle Scholar
  72. 72.
    Umpleby, S. (2003). Heinz von Foerster and the mansfield amendment. Cybernetics and Human Knowing, 10(3/4), 187–190.Google Scholar
  73. 73.
    von Bertalanffy, L. (1968). General system theory. Foundations, development, applications. New York: George Braziller.Google Scholar
  74. 74.
    von Foerster, H. (2003). Understanding understanding. Essays on cybernetics and cognition. New York: Springer.CrossRefGoogle Scholar
  75. 75.
    von Glasersfeld, E. (2007). The constructivist view of communication. In A. Müller & K. Müller (Eds.), An unfinished revolution? Heinz von Foerster and the Biological Computer Laboratory/BCL 1958–1976 (pp. 351–360). Vienna: edition echoraum.Google Scholar
  76. 76.
    Whitaker, R. (2011). From Rosenblueth to Richmond. In Tutorial Delivered at the 2011 Annual Conference of the American Society for Cybernetics in Richmond. Available at: Accessed 19 Jan 2019.
  77. 77.
    Wiener, N. (1936). The role of the observer. Philosophy of Science, 3(3), 307–319.CrossRefGoogle Scholar
  78. 78.
    Wiener, N. (1948). Cybernetics; Or, control and communication in the animal and the machine. Cambridge: MIT Press.Google Scholar
  79. 79.
    Wiener, N. (1954). The human use of human beings. Cybernetics and society. New York: Doubleday.Google Scholar
  80. 80.
    Wiener, N. (1993). Invention: The care and feeding of ideas. Cambridge: MIT Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ArchitectureXi’an Jiaotong-Liverpool UniversitySuzhouChina

Personalised recommendations