Skip to main content

van der Waals Heterostructures

  • Chapter
  • First Online:
Nanomechanics in van der Waals Heterostructures

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Combining two-dimensional (2D) materials in different geometries is an important reason for the expansion of research interest in them. Of the wide range of materials available, there is an almost limitless number of ways that they can be combined, each with their own unique characteristics and phenomena [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425

    Article  Google Scholar 

  2. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH (2016) 2D materials and van der Waals heterostructures. Science 353(6298):4917–4921

    Article  Google Scholar 

  3. Lee GH, Yu YJ, Lee C, Dean C, Shepard KL, Kim P, Hone J (2011) Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl Phys Lett 99(24):1–4

    Google Scholar 

  4. Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F, Katsnelson MI, Eaves L, Morozov SV, Mayorov AS, Peres NM, Castro Neto AH, Leist J, Geim AK, Ponomarenko LA, Novoselov KS (2012) Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett 12(3):1707–1710

    Article  ADS  Google Scholar 

  5. Yu WJ, Liu Y, Zhou H, Yin A, Li Z, Huang Y, Duan X (2013) Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol 8(12):952–958

    Article  ADS  Google Scholar 

  6. Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney AP, Gholinia A, Watanabe K, Taniguchi T, Haigh SJ, Geim AK, Tartakovskii AI, Novoselov KS (2015) Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater 14(3):301–306

    Article  ADS  Google Scholar 

  7. Balakrishnan J, Koon GKW, Avsar A, Ho Y, Lee JH, Jaiswal M, Baeck SJ, Ahn JH, Ferreira A, Cazalilla MA, Neto AH, Özyilmaz B (2014) Giant spin Hall effect in graphene grown by chemical vapour deposition. Nat Commun 5:4748

    Article  Google Scholar 

  8. Avsar A, Tan JY, Taychatanapat T, Balakrishnan J, Koon G, Yeo Y, Lahiri J, Carvalho A, Rodin AS, O’Farrell E, Eda G, Castro Neto AH, Özyilmaz B (2014) Spin-orbit proximity effect in graphene. Nat Commun 5:4875

    Article  Google Scholar 

  9. Mak KF, McGill KL, Park J, McEuen PL (2014) The valley Hall effect in MoS2 transistors. Science 344(6191):1489–1492

    Article  ADS  Google Scholar 

  10. Thomas PA, Marshall OP, Rodriguez FJ, Auton GH, Kravets VG, Kundys D, Su Y, Grigorenko AN (2016) Nanomechanical electro-optical modulator based on atomic heterostructures. Nat Commun 7:1–6

    Google Scholar 

  11. Adrian Parsegian V (2005) Van der Waals forces: a handbook for biologists, chemists, engineers, and physicists. Cambridge University Press

    Google Scholar 

  12. Israelachvili J (2011) Intermolecular and surface forces, 3rd edn. Academic Press

    Google Scholar 

  13. Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, Hoboken

    MATH  Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  ADS  Google Scholar 

  15. Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, Van Den Brink J (2007) Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B 76(7):2–5

    Google Scholar 

  16. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722–726

    Article  ADS  Google Scholar 

  17. Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, Leroy BJ (2011) Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater 10(4):282–285

    Article  ADS  Google Scholar 

  18. Paszkowicz W, Pelka J, Knapp M, Szyszko T, Podsiadlo S (2002) Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10-297.5 K temperature range. Appl Phys A Mater Sci Process 75(3):431–435

    Google Scholar 

  19. Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi JD, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, Leroy BJ (2012) Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat Phys 8(5):382–386

    Article  Google Scholar 

  20. Wallbank JR (2014) Electronic properties of graphene heterostructures with hexagonal crystals. Springer, Cham

    Book  Google Scholar 

  21. Hunt B, Sanchez-Yamagishi JD, Young AF, Yankowitz M, LeRoy BJ, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori RC (2013) Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 340(6139):1427–1430

    Article  ADS  Google Scholar 

  22. Dean CR, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard KL, Hone J, Kim P (2013) Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497(7451):598–602

    Article  ADS  Google Scholar 

  23. Ponomarenko LA, Gorbachev RV, Yu GL, Elias DC, Jalil R, Patel AA, Mishchenko A, Mayorov AS, Woods CR, Wallbank JR, Mucha-Kruczynski M, Piot BA, Potemski M, Grigorieva IV, Novoselov KS, Guinea F, Fal’Ko VI, Geim AK (2013) Cloning of Dirac fermions in graphene superlattices. Nature 497(7451):594–597

    Article  ADS  Google Scholar 

  24. Bhushan B (2008) Nanotribology and nanomechanics, 2nd edn. Springer, Heidelberg

    Google Scholar 

  25. Kolmogorov AN, Crespi VH (2005) Registry-dependent interlayer potential for graphitic systems. Phys Rev B 71(23):1–6

    Article  Google Scholar 

  26. Marom N, Bernstein J, Garel J, Tkatchenko A, Joselevich E, Kronik L, Hod O (2010) Stacking and registry effects in layered materials: the case of hexagonal boron nitride. Phys Rev Lett 105(4):1–4

    Article  Google Scholar 

  27. Leven I, Krepel D, Shemesh O, Hod O (2013) Robust superlubricity in graphene/h-BN heterojunctions. J Phys Chem Lett 4(1):115–120

    Article  Google Scholar 

  28. Woods CR, Britnell L, Eckmann A, Ma RS, Lu JC, Guo HM, Lin X, Yu GL, Cao Y, Gorbachev RV, Kretinin AV, Park J, Ponomarenko LA, Katsnelson MI, Gornostyrev YN, Watanabe K, Taniguchi T, Casiraghi C, Gao HJ, Geim AK, Novoselov K (2014) Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat Phys 10(6):451–456

    Article  Google Scholar 

  29. Braun OM, Kivshar YS (2004) The Frenkel-Kontorova model: concepts, methods, and applications. Springer, Heidelberg

    Book  Google Scholar 

  30. Gnecco E, Meyer E (2015) Fundamentals of friction and wear, vol. 31

    Google Scholar 

  31. Hirano M (2014) Atomistics of superlubricity. Friction 2(2):95–105

    Article  MathSciNet  Google Scholar 

  32. Vanossi A, Braun OM (2007) Driven dynamics of simplified tribological models. J Phys Condens Matter 19(30):1–21

    Article  Google Scholar 

  33. Eckmann A, Park J, Yang H, Elias D, Mayorov AS, Yu G, Jalil R, Novoselov KS, Gorbachev RV, Lazzeri M, Geim AK, Casiraghi C (2013) Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett 13(11):5242–5246

    Article  ADS  Google Scholar 

  34. Woods CR, Withers F, Zhu MJ, Cao Y, Yu GL, Kozikov A, Ben Shalom M, Morozov SV, Van Wijk MM, Fasolino A, Katsnelson MI, Watanabe K, Taniguchi T, Geim AK, Mishchenko A, Novoselov KS (2016) Macroscopic self-reorientation of interacting two-dimensional crystals. Nat Commun 7:10800

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Holwill .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holwill, M. (2019). van der Waals Heterostructures. In: Nanomechanics in van der Waals Heterostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-18529-9_3

Download citation

Publish with us

Policies and ethics