Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 416 Accesses

Abstract

Bandstructure engineering is the foundation of the semiconductor industry and by extension, at the heart of modern life. Every material has a unique electronic bandstructure that describes the energy levels available for its electrons to occupy. First year physics undergraduate courses teach us that a materials’ electronic/optical behaviour can be understood with the concepts of the conduction/valence bands and the Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashcroft NW (1976) NDM. Solid state physics

    Google Scholar 

  2. Alferov ZI (1998) The history and future of semiconductor heterostructures. Semiconductors 32(1):1–14

    Article  ADS  Google Scholar 

  3. Halperin BI (2006) The 1985 nobel prize in physics. Science 231(4740):820–822

    Article  ADS  Google Scholar 

  4. Dixit US, Hazarika M, Davim JP (2017) A brief history of mechanical engineering. Springer, New York

    Book  Google Scholar 

  5. Olsman N, Goentoro L (2018) There’s (still) plenty of room at the bottom. Curr Opin Biotechnol 54:72–79

    Article  Google Scholar 

  6. Pool R (1990) A new role for the STM. Science 250(4986):1340–1341

    ADS  Google Scholar 

  7. Ergun AS, Yaralioglu GG, Oralkan O, Khuri-Yakub BT (2007), MEMS/NEMS techniques and applications, vol. 1-5. Springer, Boston

    Google Scholar 

  8. Angell J, Terry S, Barth P (1983) Silicon micromechanical devices. Sci Am 248(4):44–55

    Article  Google Scholar 

  9. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40(2):178–180

    Article  ADS  Google Scholar 

  10. Yang S, Xu Q (2017) A review on actuation and sensing techniques for MEMS-based microgrippers. J Micro-Bio Robot 13(1–4):1–14

    Article  Google Scholar 

  11. Frost & Sullivan (2017) Global market for MEMS and NEMS sensors, forecast to 2022—MEMS & NEMS sensors are enabling smart devices and IoT applications across vertical markets, Technical Report February, Frost & Sullivan

    Google Scholar 

  12. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field in atomically thin carbon films. Science 306(5696):666–669

    Article  ADS  Google Scholar 

  13. Shioyama H (2001) Cleavage of graphite to graphene. J Mater Sci Lett 20(6):499–500

    Article  Google Scholar 

  14. Taghioskoui M (2009) Trends in graphene research. Mater Today 12(10):34–37

    Article  Google Scholar 

  15. Zhang Y, Tan YWY, Stormer HHL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(November):201–204

    Article  ADS  Google Scholar 

  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  ADS  Google Scholar 

  17. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Nat Acad Sci 102(30):10451–10453

    Article  ADS  Google Scholar 

  18. Taniguchi T, Watanabe K (2007) Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J Cryst Growth 303(2):525–529

    Article  ADS  Google Scholar 

  19. Velický M, Toth PS (2017) From two-dimensional materials to their heterostructures: an electrochemist’s perspective. Appl Mater Today 8:68–103

    Article  Google Scholar 

  20. Geim AK, Grigorieva IV (2013), Van der Waals heterostructures. Nature 499(7459):419–425

    Article  Google Scholar 

  21. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH (2016) 2D materials and van der Waals heterostructures. Science 353(6298):4917–4921

    Article  Google Scholar 

  22. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  ADS  Google Scholar 

  23. Bertolazzi S, Brivio J, Kis A (2011) Stretching and breaking of ultrathin MoS\(_{2}\). ACS Nano 5(12):9703–9709

    Article  Google Scholar 

  24. Falin A, Cai Q, Santos EJ, Scullion D, Qian D, Zhang R, Yang Z, Huang S, Watanabe K, Taniguchi T, Barnett MR, Chen Y, Ruoff RS, Li LH (2017) Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat Commun 8:1–9

    Article  Google Scholar 

  25. Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong ZJ, Ye Z, Ye Y, Yin X, Zhang X (2015) Observation of piezoelectricity in free-standing monolayer MoS\(_{2}\). Nat Nanotechnol 10(2):151–155

    Article  ADS  Google Scholar 

  26. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL, Bunch JS, Craighead HG, van der Zande AM, McEuen PL, Tanenbaum DM (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493

    Article  ADS  Google Scholar 

  27. Chen C, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Stormer HL, Heinz TF, Hone J (2009) Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotechnol 4(12):861–867

    Article  ADS  Google Scholar 

  28. Ma J, Jin W, Ho HL, Dai JY (2012) High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt Lett 37(13):2493

    Article  ADS  Google Scholar 

  29. Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz TF, Hone J, Wang ZL (2014) Piezoelectricity of single-atomic-layer MoS\(_{2}\) for energy conversion and piezotronics. Nature 514(7523):470–474

    Article  ADS  Google Scholar 

  30. Akinwande D, Brennan CJ, Felts JR, Park HS, Lu N, Liechti KM, Li Y, Bunch JS, Zhang YW, Kim JS, Gao H, Huang R, Egberts P, Zhu Y, Li T, Reed EJ, Zhang T, Yakobson BI, Wang P, Zhou Y (2017) A review on mechanics and mechanical properties of 2D materials-Graphene and beyond. Extrem Mech Lett 13:42–77

    Article  Google Scholar 

  31. Khan ZH, Kermany AR, Ă–chsner A, Iacopi F (2017) Mechanical and electromechanical properties of graphene and their potential application in MEMS. J Phys D Appl Phys 50(5):053003

    Article  ADS  Google Scholar 

  32. Woods CR, Britnell L, Eckmann A, Ma RS, Lu JC, Guo HM, Lin X, Yu GL, Cao Y, Gorbachev RV, Kretinin AV, Park J, Ponomarenko LA, Katsnelson MI, Gornostyrev YN, Watanabe K, Taniguchi T, Casiraghi C, Gao HJ, Geim AK, Novoselov K (2014) Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat Phys 10(6):451–456

    Article  Google Scholar 

  33. Leven I, Krepel D, Shemesh O, Hod O (2013) Robust superlubricity in graphene/h-BN heterojunctions. J Phys Chem Lett 4(1):115–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Holwill .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holwill, M. (2019). Introduction. In: Nanomechanics in van der Waals Heterostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-18529-9_1

Download citation

Publish with us

Policies and ethics