Methods of Investigation

  • Petar MilanovićEmail author
  • Nikolay Maksimovich
  • Olga Meshcheriakova
Part of the Advances in Karst Science book series (AKS)


Understanding the properties of natural evaporite karst is a complex task, whether the data are needed for dam and reservoir construction, for water supply or simply for advancing scientific knowledge.


  1. Abelson, M., Y. Yechieli, T. Aksinenko, V. Pinski, and B. Baer. 2013. Microseismic Monitoring of Concealed Sinkholes Activity It Mineral Beach, Ded Sea, Israel. GSI Report GSI/29.Google Scholar
  2. Al-Halbouni, D., E.P. Holohan, L. Saberia, H. Alrshdan, A. Sawarieh, D. Closson, T.R. Walter, and T. Dahm. 2017. Sinkholes, subsidence and subrosion on the eastern shore of the Dead Sea as revealed by a close-range photogrammetric survey. Geomorphology 285: 305–324.CrossRefGoogle Scholar
  3. Al-Zoubi, A., A-R. Abueladas, C. Camerlynck, R. Al-Ruzouq, S. Al-Rawashdeh,M. Ezersky, and W. Ali. 2007. Use of 2D multi electrodes resistivity imagining for sinkholes hazard assessment along the eastern part of the Death Sea, Jordan. American Journal of Environmental Sciences 3 (4): 229–233.CrossRefGoogle Scholar
  4. Anagnosti, P. 1987. Prediction and control of seepage in soluble grounds. In IX European Conference, International Society of Soil Mechanics and Foundation Engineering, Dublin.Google Scholar
  5. Bodet, L., P.Y. Gilbert, A. Dhemaied, C. Camerlynck, and A. Al-Zoubi. 2010. Surface–wave profiling for sinkhole hazard assessment along the eastern Dead Sea shoreline, Ghor Al-Haditha, Jorda. In 72th EAGE Conference & Exhibition Incorporating EUROPEC 2010, 4. Barcelona, Spain.Google Scholar
  6. Bodvarsson, G. 1973. Temperature investigations in geothermal systems. Georxploration 11: 141–149.CrossRefGoogle Scholar
  7. Bonacci, O. 1987. Karst Hydrology. With Specific Reference to the Dinaric Karst: Springed-Verlag, Berlin Heidelberg, New York, 184.Google Scholar
  8. Borić, M. 1980. The use of groundwater temperature changes in locating storage leakages in karst areas. In Proceedings of ^th Yugoslav Symposium, Hydrogeology and Engineering Geology, Portorož, Yugoslavia, 179.Google Scholar
  9. Chengjie, Z. 1988. A study of geothermal field and karstic leakage in karst area, In Proceedings of the IAH 21st Congress, Geological Publishing house, Beijing, China, 1127.Google Scholar
  10. Closson, D., and N. A. Karaki. 2009. Earthen dike leakage at the Dead Sea. In Engineering Geology for Society and Territory, eds. G. Lollino, A. Manconi, F. Guzzetti, M. Culshaw, P. Bobrowsky, F. Luino, Vol. 5. 461–464. Dordrecht, The Netherlands: Springer.Google Scholar
  11. Crain, E.R. 2003. Crain’s petrophysical handbook, chapter twenty. In Elastic properties of Rocks. Canada: Sponsored by Spectrum 2000 Mindware Ltd.Google Scholar
  12. Davydov, V.A., and G.A. Tsai. 2018. Study of dangerous natural and manmade geological processes using geophysical methods. In Russian. News of the USMU 2 (50): 65–71.Google Scholar
  13. Dortman, N.B. 1992. Petrophysics: A handbook. In Three Books. Book One. Rocks and Minerals. (In Russian), 391 Moscow: Nedra. p. 391.Google Scholar
  14. Drogue, C. 1985. Geothermal gradients and groundwater circulation infissured and karstified rocks. Journal of Geodynamics 4.CrossRefGoogle Scholar
  15. El-Isa, Z., O. Rimawi, G. Jarrar, N. Abu-Karaki, S. Taqieddin, M. Atalah, N. Abderahman, and A. Al-Saed. 1995. Assesment of the Hazard of Subsidence and Sinkholes in Ghor Al-Haditha Area. Report submitted to Jordan Valley Authority, 141 Amman: Ubuversity of Jordan.Google Scholar
  16. Eppelbaum, L.V., M. Ezerski, A. Al-Zoubi, V. Goldshmidt, and A. Legchenko. 2008. Study of the factors affecting the karst volume assessment in the Dead Sea sinkhole problem using microgravity field analysis and 3D modelling. Advances in Geosciences 19: 97–115.CrossRefGoogle Scholar
  17. Ezersky, M., and A. Frumkin. 2013. Faults-dissolution front relations and the DS sinkholes problem. Geomorphology 201: 35–44.CrossRefGoogle Scholar
  18. Ezersky, M. and L. Sobolevsky. 2002. Estimates of the Rock Mass Quality Using Geophysical Methods. Second stage. G.I.I. Report No.263/228/02, Israel.Google Scholar
  19. Ezersky, M. 2006. The seismic velocities of Dead Sea salt applied to the sinkhole problem. Journal of Applied Geophysics 58: 45–58.CrossRefGoogle Scholar
  20. Ezersky, M., A. Legchenko, C. Camerlynck, and A. Al-Zoubi. 2007. The salt Formation Edge as a Major Indicator of the Sinkhole Hazard in the Dead Sea Western Coast. In 13th AEGE Near Surface Meeting and Exhibition, Istanbul, 67.Google Scholar
  21. Ezersky, M. 2008. Geological structure of the Ein Gedi Sinkhole occurrencesite at the Dead Sea shore in Israel. Journal of applied Geophysics 64: 59–69.CrossRefGoogle Scholar
  22. Ezersky, M., A. Legchenko, C. Camerlynck, L. Appelbaum, S. Keidar, N. Baucher, and K. Chalikakis. 2010. The Dead Sea sinkhole hazard—new findings based on a multidisciplinary geophysical study. Zeitschrift für Geomorphologique 54 (2): 69–90.CrossRefGoogle Scholar
  23. Ezersky, M. 2011. Improvement of the seismic refraction methods for mapping of the buried salt layers along the Ded Sea shoreline. GII Report No. 211/486/09, Lod, Israel, 24.Google Scholar
  24. Ezersky, M., L. Bodet, A. Al-Zoubi, C. Camerlynck, A. Dhemaied, and P.-Y Galibert. 2013. Seismic surface-wave prospecting methods for sinkhole hazard assessment along the Dead Sea shoreline. Journal Environmental and Engineering Geophysics 18 (4).CrossRefGoogle Scholar
  25. Ezersky, M., A. Legchenko, L. Eppelbaum, and A. Al-Zoubi. 2017. Overview of the geophysical studies in the Dead Sea coastal area related to evaporite karst and recent sinkhole development. International Journal of Speleology Tampa, FL. 46 (2): 277–302.CrossRefGoogle Scholar
  26. Ezersky, M., and A. Legchenko. 2014. Quantitative assessment of In-situ salt karstification using shear wave velocity, Dead Sea. Geomorphology 221221: 150–163.CrossRefGoogle Scholar
  27. Frumkin, A., L. Kofman, and M. Ezerski. 2009. Improvement of the reliability of subsurface void detection, including sinkhole development, at the Dead Sea shore area by means of Ground Penetration Radar (GPR). Hebrew University—TECHNION Research and Development Foundation LTD—Geophysical Institute of Israel, Report No. MNI-ES-36-2008, 145.Google Scholar
  28. Frumkin, A., M. Ezersky, A. Al-Zoubi, E. Akkawi, and A.-R. Abueladas. 2011. The Dead Sea hazard: geophysical assessment of salt dissolution and collapse. Geomorphology 134 (1–2): 102–117.CrossRefGoogle Scholar
  29. Goldman, M., D.D. Gilad, A. Ronen, and A. Melloul. 1991. Mapping of sea water intrusion into the coastal aquifer of Israel by the time domain electromagnetis method. Geoexploration 28: 153–174.CrossRefGoogle Scholar
  30. Haenel, R., and F. Mongelli. 1988. Thermal exploration methods. In Handbook of Terrestrial Heat-Flow Density Determination, eds. R. Haenel, L. Rubach, L. Stegena, 353–389. Dordrecht: Kluwer Academic Publishers.Google Scholar
  31. Kafri, U., and B. Lang. 1997. Detection subsurface brines, freshwater bodiesand the interface configuration in-betweenby the time domain electromagneticmethod in the Dead Sea Rift, Israel. Environmental Geology 31: 42–49.CrossRefGoogle Scholar
  32. Keydar, S., D. Pelman, and M. Ezersky. 2010. Application of seismic diffraction imaging for detecting near-surface inhomogenities in the Dead Sea area. Journal of Applied Geophysics 71 (2–3): 47/52.CrossRefGoogle Scholar
  33. Keydar, S., B. Medvedev, A. Al-Zoubi, M. Ezersky, and E. Akkavwi. 2013. 3D imaging of Dead Sea area using weighted multipath summation: A case study. International Journal of Geopgysics.Google Scholar
  34. Keydar, S., B. Medvedev, M. Ezersky, and L. Sobolevsky. 2012. Imaging shallow subsurface of Dead Sea are by common short point stacking and diffraction method using weighted multipath summatiom. Journal of Civil Engineering and Science 1 (2): 75–79.Google Scholar
  35. Kolesnikov, V.P., A.V. Konoplev, A.M. Prigara, and A.V. Tatarkin. 2012. The Technology of integrated engineering and geophysical surveys for diagnosing the state of hydraulic structures. In Russian. Modern problems of Science and Education. 6: 630.Google Scholar
  36. Krawczyk, C., U. Polom, H. Alrshdan, and Al.-Halbouni, D., Sawarieh, A. and Dahm, T. 2015. New process model for the Dead Sea sinkholes at Ghor Al Haditha, Jordan, derived from shear-wave reflection seismic. In: EGU General Assembly. Viena, 5761. Id: Austria.Google Scholar
  37. Lachassagne, P., J.-M. Baltassat, A. Legchenko, and H.M. de Gramont. 2005. The links between MRS parameters and the hydrogeological parameters. Near Surface Geophysics 3 (4): 259–265.CrossRefGoogle Scholar
  38. Legchenko, A., M. Ezerski, C. Kamerynchuk, A. Al-Zoubi, and K. Chalikakis. 2009. Joint use of TEM and MRS method in complex geological seting. Comptes Rendus Geosciences 341 (10–11): 908–917.CrossRefGoogle Scholar
  39. Legchenko, A. 2013. Magnetic Resonance Imaging for Groundwater,158. ISTE Ltd. Great Britain: Willey.Google Scholar
  40. Legchenko, A., J.-M. Baltassat, A. Bobachev, C. Martin, H. Robin, and J.-M. Vouillamoz. 2004. Magnetic resonance sounding applied to aquifer characterisation. Journal of Ground Water 42 (3): 363–373.CrossRefGoogle Scholar
  41. Legchenko, A., M. Descloitres, A.A. Bost, L. Ruiz, M. Readdy, J.F. Girard, M. Sekhar, M.S.M. Kumar, and J.J. Braun. 2006. Resolution of MRS applied to the characterization of hardrock aquifers. Ground Water 44 (4): 545–554.CrossRefGoogle Scholar
  42. Leghchenko, A., M. Ezersky, C. Camerlynck, A. Al-Youbi, K. Chalikakis, and J.-F. Giragrd. 2008. Locatink water-filled karst curves and estimating their volume using magnetic resonance soundings. Geophysics 73 (5): G51–G61.CrossRefGoogle Scholar
  43. Milanović, P. 2004. Water Resources Engineering in Karst. Boca Raton: CRC Press.CrossRefGoogle Scholar
  44. Polom, U., H. Alrshdan, D. Al-Halbouni, A. Sawarieh, T. Daham, and C.M. Krawczyk, 2016. Improved Dead Sea sinkhole site characterisation at Ghor Al Haditha, Jordan, based on repeated shear wave reflection seismic profiling. In EGU General Assembly, 6440.Google Scholar
  45. Ravnik, D., and D. Rajver. 1989. Thermometric Investigations for Underground Dam Ombla: Dubrovnik (Phase I and Phase II), Report, Geologica Suravay, Ljubljana, Slovenia.Google Scholar
  46. Ravnik, D., and D. Rajver. 1998. The use of inverse geotherms for determining underground water flow at the Ombla karst spring near Dubrovnik, Croatia.Google Scholar
  47. Rybakov, M., V. Goldshmidt, L. Fleischer, and Y. Rotstein. 2001. Cave detection and 4-d monitoring: A microgravimetry case history near the Dead Sea. Leading Edge 20 (8): 896–900.CrossRefGoogle Scholar
  48. Shuvalov, V.M. 2012. Integrated application of geophysical methods in solving problems of assessing the location, depth and form of local heterogeneity. In Russian. Bulletin of Perm University. Geology series. Issue 4 (17). 63–67.Google Scholar
  49. Vouillamoz, J.-M., A. Legchenko, Y.M. Albouy, M. Bakalowicz, J.-M. Baltassat, and W. Al-Fares. 2003. Localization of saturated karst aquifer with magnetic resonance sounding and resistivity imagery. Ground Water 41: 578–587.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Petar Milanović
    • 1
    Email author
  • Nikolay Maksimovich
    • 2
  • Olga Meshcheriakova
    • 3
  1. 1.BelgradeSerbia
  2. 2.Institute for Natural SciencesPerm State UniversityPermRussia
  3. 3.Institute for Natural SciencesPerm State UniversityPermRussia

Personalised recommendations