Skip to main content

Plasmonic Coupling Enhanced Absorption and Fluorescence Emission in Thin Film Luminescent Solar Concentrator

  • Chapter
  • First Online:
  • 2441 Accesses

Part of the book series: Innovative Renewable Energy ((INREE))

Abstract

This research studied plasmonic composite structures of red dye molecules and gold nanoparticles (Au NPs) for thin film luminescent solar concentrator (LSC). The plasmonic coupling between the red dye molecules and Au NPs was established through controlled spacing, surface plasmon resonance enhanced local photon mode density, and multiple excitation of red dye molecules. The plasmonic composite thin film LSCs were fabricated using spin coating. Two types of structures, homogenous and multilayer layered plasmonic composite thin film LSCs, were studied. In the homogenous LSC, the Au NPs doping concentration distribution controlled spacing between Au NPs and red dye molecules. The multilayered plasmonic composite, transparent polymer spacer layer of 0.0, 30 ± 5 and 60 ± 5 nm was placed between the red dye molecules and Au NPs film to control volume of red dye molecules experienced plasmonic interaction. Spectroscopic and confocal microscopic characterizations probed localized and macroscopic behavior of plasmonic composite structurers. The thin film LSC edge emission measurements assessed the plasmonic coupling enhanced emission for thin film LSCs and their correlation established optimum plasmonic coupling between red dye molecules and Au NPs. Plasmonic interaction improved optical absorption of the plasmonic composite thin film LSC by ~12% moreover independent spacer layers thickness. The fluorescence emission of plasmonic composite structure enhanced by 13, 20, and 25% for spacing layer 0.0, 30 ± 5 and 60 ± 5 nm, respectively. The electrical characterization of this plasmonic thin film LSC followed optical characterizations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Weber WH, Lambe J (1976) Luminescent greenhouse collector for solar radiation. Appl Opt 15:3–4

    Article  Google Scholar 

  2. Goetzberger A, Greube W (1977) Solar energy conversion with fluorescent collectors. Appl Phys 14:123–139

    Article  Google Scholar 

  3. Rapp CF, Boling NL (1978) Luminescent solar concentrator. In: Proceeding of the 13th IEEE PVSC. IEEE, Washington, DC, pp 690–693

    Google Scholar 

  4. Smestad G, Ries H, Winston R, Yablonovitch E (1990) The thermodynamic limits of light concentrators. Sol Energy Mater 21:99–111

    Article  Google Scholar 

  5. Batchelder JS, Zewai AH, Cole T (1979) Luminescent solar concentrators 1: theory of operation and techniques for performance evaluation. Appl Opt 18:3090–3110

    Article  Google Scholar 

  6. Earp AA, Smith GB, Franklin J, Swift P (2004) Optimisation of a three-colour luminescent solar concentrator daylighting system. Sol Energy Mater Sol Cells 84:411–426

    Article  Google Scholar 

  7. Debije MG, Verbunt PPC (2012) Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv Energy Mater 2:12–35

    Article  Google Scholar 

  8. Wiegman J, van der Kolk E (2012) Building integrated thin film luminescent solar concentrators: detailed efficiency characterization and light transport modelling. Sol Energy Mater Sol Cells 103:41–47

    Article  Google Scholar 

  9. Norton B, Eames PC, Mallick TK, Huang MJ, Mccormack SJ, Mondol JD, Yohanis YG (2011) Enhancing the performance of building integrated photovoltaics. Sol Energy 85:1629–1664

    Article  Google Scholar 

  10. Olson RW, Loring RF, Fayer MD (1981) Luminescent solar concentrators and the reabsorption problem. Appl Opt 20:2934–2940

    Article  Google Scholar 

  11. Wilson LR, Rowan BC, Robertson N, Moudam O, Jones AC, Richards BS (2010) Characterization and reduction of reabsorption losses in luminescent solar concentrators. Appl Opt 49:1651–1661

    Article  Google Scholar 

  12. Chandra S, McCormack SJ, Kennedy M, Doran J (2015) Quantum dot solar concentrator: optical transportation and doping concentration optimization. Sol Energy 115:552–561

    Article  Google Scholar 

  13. Debije MG, Verbunt PPC, Rowan BC, Richards BS, Hoeks TL (2008) Measured surface loss from luminescent solar concentrator waveguides. Appl Opt 47:6763–6768

    Article  Google Scholar 

  14. Leow SW, Corrado C, Osborn M, Isaacson M, Alers G, Carter SA (2013) Analyzing luminescent solar concentrators with front-facing photovoltaic cells using weighted Monte Carlo ray tracing. J Appl Phys 113:214510–243502

    Article  Google Scholar 

  15. Reisfeld R, Shamrakov D, Jorgensen C (1994) Photostable solar concentrators based on fluorescent glass films. Sol Energy Mater Sol Cells 33:417–427

    Article  Google Scholar 

  16. Griffini G, Brambilla L, Levi M, Del Zoppo M, Turri S (2013) Photo-degradation of a perylene-based organic luminescent solar concentrator: molecular aspects and device implications. Sol Energy Mater Sol Cells 111:41–48

    Article  Google Scholar 

  17. Chandra S, Rafiee M, Doran J, Mc Cormack SJ (2018) Absorption coefficient dependent non-linear properties of thin film luminescent solar concentrators. Sol Energy Mater Sol Cells 182:331–338

    Article  Google Scholar 

  18. Dienel T, Bauer C, Dolamic I, Brü D (2010) Spectral-based analysis of thin film luminescent solar concentrators. Sol Energy 84:1366–1369

    Article  Google Scholar 

  19. Griffini G, Levi M, Turri S (2014) Novel high-durability luminescent solar concentrators based on fluoropolymer coatings. Prog Org Coatings 77:528–536

    Article  Google Scholar 

  20. Griffini G, Levi M, Turri S (2015) Thin-film luminescent solar concentrators: a device study towards rational design. Renew Energy 78:288–294

    Article  Google Scholar 

  21. Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45:661–699

    Article  Google Scholar 

  22. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  Google Scholar 

  23. Calander N, Willander M (2002) Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids. J Appl Phys 92:4878–4884

    Article  Google Scholar 

  24. Muskens OL, Giannini V, Sánchez-Gil JA, Gómez Rivas J (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett 7:2871–2875

    Article  Google Scholar 

  25. Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501

    Article  Google Scholar 

  26. Chen Y, Munechika K, Jen-La Plante I, Munro AM, Skrabalak SE, Xia Y, Ginger DS (2008) Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl Phys Lett 93:1–4

    Google Scholar 

  27. Thomas M, Greffet J, Carminati R (2004) Single-molecule spontaneous emission close to absorbing nanostructures. Appl Phys Lett 85:3863–3865

    Article  Google Scholar 

  28. Chandra AJCS, McCormack SJ, Doran J, Kennedy M (2010) New concept for luminescent solar concentrator, in: Proceeding of the 25th European Photovoltaic Solar Energy Conference. WIP Renewable Energies, München, p 759–762

    Google Scholar 

  29. Bohren DRHF (1983) Absorption and scattering of light by small particles, 1st edn. Wiley, Hoboken

    Google Scholar 

  30. Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:23–25

    Article  Google Scholar 

  31. Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M, Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M (2002) Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett 2(12):1449–1452

    Article  Google Scholar 

  32. Gryczynski I, Malicka J, Shen Y, Gryczynski Z, Lakowicz JR (2002) Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation. J Phys Chem B 106:2191–2195

    Article  Google Scholar 

Download references

Acknowledgements

This research work is funded by the European Research Council under the project Plasmonic Enhancement and Directionality of Emission for Advanced Luminescent Solar Devices (PEDAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, S., McCormack, S.J. (2020). Plasmonic Coupling Enhanced Absorption and Fluorescence Emission in Thin Film Luminescent Solar Concentrator. In: Sayigh, A. (eds) Renewable Energy and Sustainable Buildings. Innovative Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-18488-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18488-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18487-2

  • Online ISBN: 978-3-030-18488-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics