Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

  • 1715 Accesses

Abstract

In this chapter Itô and Stratonovich calculi are introduced and we prove the Itô lemma and describe Itô calculus for multiplicative noise. Finally Itô-Taylor expansion will be given for white noise-driven Langevin dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1983)

    Book  Google Scholar 

  2. E. Wong, M. Zakai, Ann. Math. Statist. 36, 1560 (1965)

    Article  MathSciNet  Google Scholar 

  3. E. Wong, M. Zakai, Internat. J. Engrg. Sci. 3, 213 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Rahimi Tabar .

Problems

Problems

6.1

Nonanticipating function

Show the following relations hold for given nonanticipating functions f(t) and g(t),

$$\begin{aligned} (a)&\quad \left\langle \int _{t_0}^{t} ~f(t') ~ dW(t') \right\rangle = 0 \\\nonumber \\ (b)&\quad \left\langle \int _{t_0}^{t} ~f(t') ~dW(t') \int _{t_0}^{t} ~g(t'') ~ dW(t'') \right\rangle = \int _{t_0}^{t} dt' \left\langle f(t') ~g(t') \right\rangle . \end{aligned}$$

6.2

Itô and Stratonovich interpretations

For Langevin equation

$$\begin{aligned} \frac{d x}{dt}= a(x,t) + b(x,t) ~\varGamma (t) \end{aligned}$$

where \(\varGamma (t)\) is Gaussian white noise, show that

(a) with Itô interpretation

$$\begin{aligned} \langle b(x,t) ~\varGamma (t) \rangle = 0. \end{aligned}$$

(b) with Stratonovich interpretation

$$\begin{aligned} \langle b(x,t) \varGamma (t) \rangle = \frac{1}{2} \langle b'(x,t) b(x,t) \rangle \end{aligned}$$

where \(b'(x,t) = \frac{\partial }{\partial x} b(x,t)\).

6.3

Itô and Stratonovich interpretations

For the following Langevin equation,

$$\begin{aligned} \frac{d x(t)}{dt}= - x(t) ~\varGamma (t) , x(0)=x_0 \end{aligned}$$

derive \(\langle x(t) \rangle \) in Itô and Stratonovich senses.

6.4

Itô’s lemma

Let W(t) be a Wiener process. Compute \((dx)^2\) using Itô’s lemma for:

$$ dx(t) = dt + x(t)~ dW(t). $$

6.5

Stochastic differential equation

Let W(t) be a Wiener process. Compute stochastic differential equation, i.e. dz(t), followed by:

(a) \(z(t) = (x(t))^2\), where \(dx(t) = \mu x(t) dt + \sigma x(t) dW(t)\),

(b) \(z(t) = 3 + t + e^{W(t)}\),

(c) \(z(t) = e ^{x(t)}\), where \(dx(t) = \mu dt + \sigma dW(t)\),

with constant \(\mu \) and \(\sigma \).

6.6

Itô’s lemma

Using the Itô’s lemma, calculate the following double integral and show that

$$ \int _{t_0} ^ {t} \int _{t_0} ^ {s_1} dW(s_2) dW(s_1) = \frac{1}{2} [W(t) - W(t_0)]^2 - \frac{1}{2} (t-t_0) $$

6.7

Itô’s integral

Calculate the following multiple Itô integral and show that

$$ \int _{0} ^ {t} dW(s_1) \int _{0} ^ {s_1} dW(s_2) \cdots \int _{0} ^ {s_{n-1}} W(s_n) dW(s_n) = \frac{1}{(n+1)!} H_{n+1} (W(t)) $$

where \(H_n(x)\) is the nth order Hermit polynomial with Rodrigues’ formula

$$ H_n(x) = e^{\frac{1}{2} x^2} \left( \frac{d}{dx}\right) ^n e^{-\frac{1}{2} x^2} \quad . $$

6.8

Itô-Taylor expansion

Show that solution of the Langevin equation

$$ dx(t)= a(x,t) ~dt + b(x,t) ~dW(t) $$

can be written as

$$\begin{aligned} x(t)= & {} x(t_0) + a[x(t_0)] \int _{t_0} ^ t ds_1 + b[x(t_0)] \int _{t_0} ^ t dW(s_1) \\\nonumber \\+ & {} b[x(t_0)] b'[x(t_0)] \int _{t_0} ^ t \int _{t_0} ^ {s_1} dW(s_2) dW(s_1) + R \end{aligned}$$

where R is remainder of order \(\mathcal {O}(dt^{3/2})\) and higher if \(dt=t -t_0\) is small. Keeping the first three and four terms in above expansion will give the Euler-Maruyama and Milstein schemes, respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tabar, M.R.R. (2019). Stochastic Integration, Itô and Stratonovich Calculi. In: Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-18472-8_6

Download citation

Publish with us

Policies and ethics