Skip to main content

Distinguishing Diffusive and Jumpy Behaviors in Real-World Time Series

  • Chapter
  • First Online:
  • 1708 Accesses

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Jumps are discontinuous variations in time series and with large amplitude can be considered as an extreme event. We expect the higher the jump activity to cause higher uncertainty in the stochastic behaviour of measured time series. Therefore, building statistical evidence to detect real jump seems of primary importance. In addition jump events can participate in the observed non-Gaussian feature of the increments’ (ramp up and ramp down) statistics of many time series [1]. This is the reason that most of the jump detection techniques are based on threshold values for differential of time series. There is not, however, a robust method for detection and characterisation of such discontinuous events that is able to estimate time-dependence of the “jump rate” and their amplitudes, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We note in variance gamma model for jump amplitude introduced in Chap. 12, one finds \({K_{j}^{(6)}(x,\tau ) }/{5 K_{j}^{(4)}(x,\tau )} \approx \sigma _{\xi } ^2 (x,\hat{ b}) (1+ 2 \hat{b})\), where \(\hat{b}\) is given by Eq. (12.15).

  2. 2.

    We note that for \(\alpha =2\), one can start from x(0) and \(x(\Delta )\), then find two coarse samples of time series which are not statistically independent, of course. We can average the estimated KM conditional moments from two series. For \(\alpha =n\), we have n possible coarse samples.

References

  1. M. Anvari, G. Lohmann, M. Wächter, P. Milan, E. Lorenz, D. Heinemann, M.R. Rahimi Tabar, J. Peinke, New J. Phys. 18, 063027 (2016)

    Article  ADS  Google Scholar 

  2. K. Lehnertz, L. Zabawa, M.R.R. Tabar, New J. Phys. 20, 113043 (2018)

    Article  ADS  Google Scholar 

  3. M.B. Weissman, Rev. Mod. Phys. 60, 537 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  4. R.T. Wakai, D.J.V. Harlingen, Appl. Phys. Lett. 49, 593 (1986)

    Article  ADS  Google Scholar 

  5. C.T. Rogers, R.A. Buhrman, H. Kroger, L.N. Smith, Appl. Phys. Lett. 49, 1107 (1986)

    Article  ADS  Google Scholar 

  6. M. Matsuda, S. Kuriki, Appl. Phys. Lett. 53, 621 (1988)

    Article  ADS  Google Scholar 

  7. K.S. Ralls, R.A. Buhrman, Phys. Rev. Lett. 60, 2434 (1988)

    Article  ADS  Google Scholar 

  8. D.H. Cobden, A. Savchenko, M. Pepper, N.K. Patel, Rev. Lett. 69, 502 (1992)

    Google Scholar 

  9. I. Bloom, A.C. Marley, M.B. Weissman, Phys. Rev. Lett. 71, 4385 (1993)

    Article  ADS  Google Scholar 

  10. P.D. Dresselhaus, L. Ji, S. Han, J.E. Lukens, K.K. Likharev, Phys. Rev. Lett. 72, 3226 (1994)

    Article  ADS  Google Scholar 

  11. M.J. Ferrari, M. Johnson, F.C. Wellstood, J.J. Kingston, T.J. Shaw, J. Clarke, J. Low Temp. Phys. 94, 15 (1994)

    Google Scholar 

  12. R.J.P. Keijsers, O.I. Shklyarevskii, H. van Kempen, Phys. Rev. Lett. 77, 3411 (1996)

    Google Scholar 

  13. A.L. Efros, M. Rosen, Phys. Rev. Lett. 78, 1110 (1997)

    Article  ADS  Google Scholar 

  14. E. Shung, T.F. Rosenbaum, S.N. Coppersmith, G.W. Crabtree, W. Kwok, Phys. Rev. B 56, R11431 (1997)

    Article  ADS  Google Scholar 

  15. M. Einax, W. Dieterich, P. Maass, Rev. Mod. Phys. 85, 921 (2013)

    Article  ADS  Google Scholar 

  16. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  17. D. Brockmann, L. Hufnagel, Phys. Rev. Lett. 98, 178301 (2007)

    Google Scholar 

  18. S. Vaughan, Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 371, 20110549 (2013)

    Google Scholar 

  19. T.M. Lenton, Nat. Clim. Chang. 1, 201 (2011)

    Google Scholar 

  20. M. Scheffer et al., Science 338, 344 (2012)

    Google Scholar 

  21. Y. Aït-Sahalia, J. Financ. 57, 2075 (2002)

    Google Scholar 

  22. S.S. Lee, P.A. Mykland, Rev. Financ. Stud. 21, 2535 (2008)

    Google Scholar 

  23. B. Goswami, N. Boers, A. Rheinwalt, N. Marwan, J. Heitzig, S.F. Breitenbach, J. Kurths, Nat. Commun. 9, 48 (2018)

    Google Scholar 

  24. D. Colquhoun, A. Hawkes, Proc. R. Soc. Lond. B 211, 205 (1981)

    Google Scholar 

  25. L.S. Liebovitch, Ann. Biomed. Eng. 16, 483 (1988)

    Google Scholar 

  26. S. Martinez-Conde, S.L. Macknik, D.H. Hubel, Nat. Rev. Neurosci. 5, 229 (2004)

    Google Scholar 

  27. H.F. Credidio, E.N. Teixeira, S.D. Reis, A.A. Moreira, J.S. Andrade, Sci. Rep. 2, 920 (2012)

    Google Scholar 

  28. M.J. Plank, E.A. Codling, Ecology 90, 3546 (2009)

    Article  Google Scholar 

  29. Y. Aït-Sahalia, J. Jacod, Testing for jumps in a discretely observed process. Ann. Stat. 37, 184 (2009)

    Article  MathSciNet  Google Scholar 

  30. S. Lee, P.A. Mykland, Jumps in financial markets: A new nonparametric test and jump clustering. Rev. Financ. Stud. 21, 2535 (2008)

    Article  Google Scholar 

  31. M. Gupta, J. Gao, C. Aggawal, J. Han, Outlier Detection for Temporal Data, Systhesis Lectures on Data Mining and Knowledge Discovery (Morgan and Claypool Publishers, San Rafael, 2014)

    Google Scholar 

  32. M. Anvari, K. Lehnertz, M.R. Rahimi Tabar, J. Peinke, Sci. Rep. 6, 35435 (2016)

    Google Scholar 

  33. A. Madanchi, M. Absalan, G. Lohmann, M. Anvari, Tabar M. Rahimi, Sol. Energy 144, 1 (2017)

    Google Scholar 

  34. S.M. Mousavi et al., Sci. Rep. 7, 4832 (2017)

    Google Scholar 

  35. M.R.R. Tabar, M. Anvari, G. Lohmann, D. Heinemann, M. Wächte, P. Milan, E. Lorenz, J. Peinke, Eur. Phys. J. Spec. Top. 223, 1 (2014)

    Article  ADS  Google Scholar 

  36. A.M. Van Mourik, A. Daffertshofer, P.J. Beek, Biol. Cybern. 94, 233 (2006)

    Google Scholar 

  37. D. Lamouroux, K. Lehnertz, Phys. Lett. A 373, 3507 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Rahimi Tabar .

Problems

Problems

19.1

Jump Detection Measure Q(x)

Reproduce the plots in Fig. 19.1. The details of linear, nonlinear and jump-diffusion are given in the caption of Figs. 18.1 and 18.2. Choose \(\tau \in \{10^{-6}, 2\times 10^{-6}, 4\times 10^{-6}, 6\times 10^{-6},\ldots ,10^{-3}\}\), in integration of corresponding stochastic equations in Euler–Maruyama scheme.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tabar, M.R.R. (2019). Distinguishing Diffusive and Jumpy Behaviors in Real-World Time Series. In: Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-18472-8_19

Download citation

Publish with us

Policies and ethics