Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

  • 1809 Accesses

Abstract

In this chapter we introduce jump-diffusion processes and provide a theoretical framework that justifies the nonparametric (data-based) extraction of the parameters and functions controlling the arrival of a jump and the distribution of the jump size from the estimated conditional Kramers–Moyal moments. The method and the results are applicable to both stationary and nonstationary time series in the presence of discontinuous jump components; see Chap. 17.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The generating function of gamma distribution is \(\langle \exp (it U) \rangle = (\frac{1}{1-ibt})^{1/b}\). For gamma-distribution

    $$ p(U,\alpha =1/b, \beta =b) = \frac{1}{\beta ^\alpha \varGamma (\alpha )} U^{\alpha -1} \exp (-U / \beta ) $$

    for \(U> 0\) and \(\alpha , \beta >0\) we have,

    $$\langle \exp (i t U) \rangle = \int _0 ^\infty e^{-zU} p(U,\alpha , \beta ) dU = \frac{1}{\beta ^\alpha \varGamma (\alpha )} \int _0 ^\infty U^{\alpha -1} e^{-(z+1/\beta )U} dU$$

    where \(z=-iU\). Defining \(y=(z + 1/\beta ) U\) we find,

    $$\langle \exp (i t U) \rangle = \frac{ (z + 1/\beta )^{-\alpha } }{ \beta ^\alpha \varGamma (\alpha )} \int _0 ^\infty e^{-y} y^{\alpha -1} dy = (1+z\beta )^{-\alpha }$$

    where we have used the \(\varGamma (\alpha ) = \int _0 ^\infty e^{-y} y^{\alpha -1} dy \).

References

  1. M. Anvari, K. Lehnertz, M.R. Rahimi Tabar, J. Peinke, Sci. Rep. 6, 35435 (2016)

    Google Scholar 

  2. M.T. Giraudo, L. Sacerdote, Biosystems 40, 75 (1997)

    Article  Google Scholar 

  3. R. Sirovich, L. Sacerdote, A.E.P. Villa, Math. Biosci. Eng. 11, 385 (2014)

    MathSciNet  Google Scholar 

  4. E. Daly, A. Porporato, Phys. Rev. E 73, 026108 (2006)

    Article  ADS  Google Scholar 

  5. R. Cont, P. Tankov, Financial Modelling with Jump Processes (Chapman & Hall/CRC, Boca Raton, 2004)

    MATH  Google Scholar 

  6. R. Stanton, A nonparametric model of term structure dynamics and the market price of interest rate risk. J. Financ. 52, 1973 (1997)

    Article  Google Scholar 

  7. M. Johannes, The statistical and economic role of jumps in continuous-time interest rate models. J. Financ. 59, 227 (2004)

    Article  Google Scholar 

  8. F.M. Bandi, T. Nguyen, On the functional estimation of jump-diffusion models. J. Econom. 116, 293 (2003)

    Article  MathSciNet  Google Scholar 

  9. D. Madan, E. Seneta, The Variance Gamma (V.G.) model for share market returns. J. Bus. 63, 511 (1990)

    Article  Google Scholar 

  10. Y. Aït-Sahalia, J. Jacod, Testing for jumps in a discretely observed process. Ann. Stat. 37, 184 (2009)

    Article  MathSciNet  Google Scholar 

  11. S. Lee, P.A. Mykland, Jumps in financial markets: a new nonparametric test and jump clustering. Rev. Financ. Stud. 21, 2535 (2008)

    Article  Google Scholar 

  12. Y. Xu, H. Li, H. Wang, W. Jia, X. Yue, J. Kurths, J. Appl. Mech. 84, 091004 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Rahimi Tabar .

Problems

Problems

12.1

Jump-drift process

Consider the following jump-drift process

$$ dx(t) = x(t)~ [ a(t) dt + b(t) dJ ] $$

with initial condition \(x(0) = x_0 > 0\). Here a(t) and b(t) are drift and jump-amplitude coefficients. Also J(t) is Poisson jump with jump rate \(\lambda (t)\).

Transform x(t) to y(t) via \( y(t)=\ln (x(t))\) and show that,

(a) \( \langle dy(t) \rangle = [ a(t) + \lambda (t) \ln (1+b(t))] dt \)

and infinitesimal variance is

(b) \(var [dy(t)] = \lambda (t) \ln ^2(1+b(t)) dt\) .

For constant coefficients \(a(t)=a_0\), \(b(t)=b_0\) and \(\lambda (t)=\lambda _0\), show that the stochastic solution is,

(c) \( x(t) = x(t_0) \exp [ a_0 (t-t_0)] ( 1+ b_0) ^{(J(t) - J(t_0))}\)

and its mean and variance are given by,

(d) \( \langle x(t) \rangle = x_0 \exp [ (a_0 + \lambda _0 b_0)(t-t_0)]\)

(e) \(var [x(t)] = \langle x(t) \rangle ^2 \left( \exp [{\lambda _0 b_0^2(t-t_0)}] - 1\right) \).

12.2

Jump-drift process

Solve the following jump-drift equation for x(t) and mean:

$$ dx(t) = a ~\sqrt{x(t)} dt + b ~( b+ 2 \sqrt{x(t)} )~dJ(t) $$

where \(\langle J(t) \rangle = \lambda _0 t\) and \(x(0) = x_0 > 0\), \(\lambda _0 \ge 0\) and ab are real constants.

12.3

Jump-drift process

Solve the following jump-drift equation for x(t), mean \(\langle x(t) \rangle \) and var[x(t)];

$$ dx(t) = -a~ x^2(t) dt - \frac{cx^2(t)}{1+cx(t)} ~dJ(t) $$

where \(\langle J(t) \rangle = \lambda _0 t\) and \(x(0) = x_0 > 0\) and ac and \(\lambda _0\) are positive constants.

12.4

Jump-diffusion process, Kramers’ escape time

Consider the jump-diffusion dynamical equation (12.1) with \(N(x,t) = -\partial U(x) / \partial x\) which is a force to the potential U(x). Assume that U(x) has a single non-degenerate minimum at \(x=a\) and maximum at \(x=b\) and that \(U(x) \rightarrow \infty \) as \(x \rightarrow -\infty \).

Show that mean exit time from interval \(x\in (-\infty ,b]\) satisfies the following equation with boundary conditions,

$$ \mathcal L_{KM}^{\dagger } \tau (x) = -1, ~~~~~ ~~\tau (b)=0, ~~ \tau _x(-\infty ) =0, $$

where adjoint Kramers–Moyal operator is given by,

$$ \mathcal L_{KM}^{\dagger } = \sum _{n=1} ^{\infty } \frac{1}{n!} M^{(n)}(x) \frac{\partial ^n }{\partial x^n} $$

with Kramers–Moyal coefficients

$$ M^{(1)}(x) = -\frac{\partial U(x)}{ \partial x} + \lambda \langle \xi \rangle , ~M^{(2)}(x) = D(x) + \lambda \langle \xi ^2 \rangle , $$

and

$$ ~M^{(j)}(x) = \lambda \langle \xi ^j \rangle ,~~ j\ge 3. $$

Here \(\lambda \) and \(\langle \xi ^j \rangle \) are the jump rate and statistical moments of jump amplitude, respectively. Hint. See Problem 7.4 and [12].

12.5

Compound Poisson process

Suppose \(J\equiv \{J(t): t \ge 0\}\) be a Poisson process with jump rate \(\lambda \), so that \(\langle J(t) \rangle = \lambda t\) for \(t \ge 0\). Let \(y_1,\ldots , y_n\) identically independent distributed random variables of J. A compound Poisson process is defined as:

$$ Q(t) = \sum _{i=1} ^{J(t)} y_i. $$

for \(t\ge 0\). The process J(t) and the random sequence \(y_i\) are independent.

(a) Show that the mean and the variance of compound Poisson process and its increments are:

$$\begin{aligned} \langle Q(t) \rangle= & {} \langle y_i \rangle ~\lambda ~t \\\\ var(Q(t))= & {} \langle y_i^2 \rangle ~\lambda ~t \\\\ \langle (Q(s)-Q(t)) \rangle= & {} \langle y_i \rangle ~\lambda ~(s-t) \\\\ var(Q(s)-Q(t))= & {} \langle y_i^2 \rangle ~\lambda ~(s-t). \end{aligned}$$

(b) Verify that, if \(s< t < u\), the increments \(Q(u)-Q(t)\) and \(Q(t) - Q(s)\) are independent.

12.6

Itô-Taylor formula for jump-diffusion processes

Let x be a diffusion process with jumps, defined as the sum of a drift term, a Brownian (Wiener) stochastic integral and a compound Poisson process [5]:

$$ x(t) = x_0 + \int _0 ^t a(s) ds + \int _0 ^t b(s) dW(s) + \sum _{i=1} ^{J(t)} \varDelta x_i $$

where a(s) and \(b^2(s)\) are nonanticipating time dependent drift and diffusion coefficients. The term \(\sum _{i=1} ^{J(t)} \varDelta x_i\) is the compound Poisson jump process and J(t) is Poisson jump process with a rate \(\lambda >0\).

Prove the Itô-Taylor formula for this jump-diffusion process for any differentiable function f(xt) (first-order and second-order differentiable with respect to t and x, respectively)

$$\begin{aligned} f(x(t),t)-f(x_0,0)= & {} \int _0 ^t \left[ \frac{\partial f(x(s),s)}{\partial s} + a(s) \frac{\partial f(x(s),s)}{\partial x} \right] ds \\\\+ & {} \frac{1}{2}\int _0 ^t b^2(s) \frac{\partial ^2 f(x(s),s)}{\partial x^2} ds \\\\+ & {} \int _0 ^t b(s) \frac{\partial f(x(s),s)}{\partial x} dW(s) \\\\+ & {} \sum _{\{i \ge 1, T_i \le t \}} [ f(x_{T_i -} + \varDelta x_i) - f(x_{T_i -})]. \end{aligned}$$

In differential notation

$$\begin{aligned} df(x(t),t)= & {} \frac{\partial f(x(t),t)}{\partial t} dt + a(t) \frac{\partial f(x(t),t)}{\partial x} dt + \frac{b^2(t)}{2} \frac{\partial ^2 f(x(t),t)}{\partial x^2} dt \\\nonumber \\+ & {} b(t) \frac{\partial f(x(t),t)}{\partial x} dW(t) + [ f(x_{t-} + \varDelta x(t)) - f(x_{t-})]. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tabar, M.R.R. (2019). Jump-Diffusion Processes. In: Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-18472-8_12

Download citation

Publish with us

Policies and ethics