Advertisement

Card-Based Cryptographic Protocols with the Minimum Number of Cards Using Private Operations

  • Hibiki Ono
  • Yoshifumi ManabeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11358)

Abstract

This paper proposes new card-based cryptographic protocols with the minimum number of cards using private operations under the semi-honest model. Though various card-based cryptographic protocols were shown, the minimum number of cards used in the protocol has not been achieved yet for many problems. Operations executed by a player where the other players cannot see are called private operations. Private operations have been introduced in some protocols to solve a particular problem or to input private values. However, the effectiveness of introducing private operations to the calculation of general logic functions has not been considered. This paper introduces three new private operations: private random bisection cuts, private reverse cuts, and private reveals. With these three new operations, we show that all of logical and, logical xor, and copy protocols are achieved with the minimum number of cards by simple three round protocols. This paper, then shows a protocol to calculate any logical functions using these private operations.

Keywords

Multi-party secure computation Card-based cryptographic protocols Private operations Logical computations Copy 

References

  1. 1.
    Abe, Y., Hayashi, Y., Mizuki, T., Sone, H.: Five-card and protocol in committed format using only practical shuffles. In: Proceedings of 5th ACM International Workshop on Asia Public-Key Cryptography (APKC 2018), pp. 3–8 (2018)Google Scholar
  2. 2.
    den Boer, B.: More efficient match-making and satisfiability the five card trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-46885-4_23CrossRefGoogle Scholar
  3. 3.
    Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48329-2_27CrossRefGoogle Scholar
  4. 4.
    Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary and sufficient numbers of cards for securely computing two-bit output functions. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 193–211. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61273-7_10CrossRefzbMATHGoogle Scholar
  5. 5.
    Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol using a deck of cards. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 135–152. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72089-0_8CrossRefGoogle Scholar
  6. 6.
    Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation without fixed points. In: Proceedings of 3rd International Conference on Mathematics and Computers in Sciences and in Industry (MCSI 2016), pp. 252–257 (2016)Google Scholar
  7. 7.
    Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21819-9_16CrossRefGoogle Scholar
  8. 8.
    Kastner, J., et al.: The Minimum number of cards in practical card-based protocols. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 126–155. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70700-6_5CrossRefGoogle Scholar
  9. 9.
    Koch, A.: The landscape of optimal card-based protocols. IACR Cryptology ePrint Archive, Report 2018/951 (2018)Google Scholar
  10. 10.
    Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. Cryptology ePrint Archive, Report 2017/423 (2017)Google Scholar
  11. 11.
    Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_32CrossRefGoogle Scholar
  12. 12.
    Kurosawa, K., Shinozaki, T.: Compact card protocol. In: Proceedings of SCIS 2017. pp. 1A2–6 (2017). (in Japanese)Google Scholar
  13. 13.
    Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. IACR Cryptology ePrint Archive, Report 2015/1031 (2015)Google Scholar
  14. 14.
    Mizuki, T.: Card-based protocols for securely computing the conjunction of multiple variables. Theor. Comput. Sci. 622, 34–44 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 162–173. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39074-6_16CrossRefGoogle Scholar
  16. 16.
    Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–606. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_36CrossRefGoogle Scholar
  17. 17.
    Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic protocols and its applications. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100(1), 3–11 (2017)CrossRefGoogle Scholar
  18. 18.
    Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02270-8_36CrossRefGoogle Scholar
  19. 19.
    Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-based three-input voting protocol utilizing private permutations. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 153–165. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72089-0_9CrossRefGoogle Scholar
  20. 20.
    Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 500–517. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48965-0_30CrossRefGoogle Scholar
  21. 21.
    Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci. 191(1), 173–183 (1998)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 110–121. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17142-5_11CrossRefGoogle Scholar
  23. 23.
    Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input functions with eight cards. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98(6), 1145–1152 (2015)CrossRefGoogle Scholar
  24. 24.
    Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority function with eight cards. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45008-2_16CrossRefGoogle Scholar
  25. 25.
    Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols using unequal division shuffles. Soft Comput. 22(2), 361–371 (2018)CrossRefGoogle Scholar
  26. 26.
    Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the millionaires’ problem using private input operations. In: Proceedings of 13th Asia Joint Conference on Information Security (AsiaJCIS 2018), pp. 23–28 (2018)Google Scholar
  27. 27.
    Ruangwises, S., Itoh, T.: And protocols using only uniform shuffles. arXiv preprint arXiv:1810.00769 (2018)
  28. 28.
    Shirouchi, S., Nakai, T., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for logic gates utilizing private permutations. In: Proceedings of SCIS 2017, pp. 1A2–2 (2017). (in Japanese)Google Scholar
  29. 29.
    Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1), 671–678 (2001)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement a random bisection cut. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M.A. (eds.) TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49001-4_5CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kogakuin UniversityTokyoJapan

Personalised recommendations