Skip to main content

Nuclear Medicine Procedures in Neuroblastoma

  • Chapter
  • First Online:
Neuroblastoma

Abstract

123Iodine-metaiodobenzylguanidine (123I-MIBG) scintigraphy is currently the tracer of choice for neuroblastoma (NB). It has high diagnostic accuracy and prognostic value for the assessment of patients after chemotherapy. A positive 123I-MIBG scan is also used for the basis of targeted radionuclide therapy with 131I-MIBG. 123I-MIBG scan however has some limitations, which should be taken into account.

With its technical superiorities, positron emission tomography/computed tomography (PET/CT) can be successfully introduced into the diagnostic workup of NB. Different PET tracers have been offered for imaging in patients with NB, and the efficacy of this modality has been compared with that of 123I-MIBG scan. In addition, possible theranostic implication of some of these PET tracers seems to be very promising. This chapter aims to analyze the principal nuclear medicine procedure available and effective in NB. In addition, the prevalent or complementary role of each functional imaging method was also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27:298–303.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Beiske K, Burchill SA, Cheung IY, Hiyama E, Seeger RC, Cohn SL, et al. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force. Br J Cancer. 2009;100:1627–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ambros PF, Ambros IM, Brodeur GM, Haber M, Khan J, Nakagawara A, et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer. 2009;100:1471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Matthay KK, Shulkin B, Ladenstein R, Michon J, Giammarile F, Lewington V, et al. Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer. 2010;102:1319–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group project. Radiology. 2011;261:243–57.

    Article  PubMed  Google Scholar 

  7. Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362:2202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 2015;33:3008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Canete A, Gerrard M, Rubie H, Castel V, Di Cataldo A, Munzer C, et al. Poor survival for infants with MYCN-amplified metastatic neuroblastoma despite intensified treatment: the International Society of Paediatric Oncology European Neuroblastoma Experience. J Clin Oncol. 2009;27:1014–9.

    Article  PubMed  Google Scholar 

  10. Garaventa A, Boni L, Lo Piccolo MS, Tonini GP, Gambini C, Mancini A, et al. Localized unresectable neuroblastoma: results of treatment based on clinical prognostic factors. Ann Oncol. 2002;13:956–64.

    Article  CAS  PubMed  Google Scholar 

  11. Lopci E, Piccardo A, Nanni C, Altrinetti V, Garaventa A, Pession A, et al. 18F-DOPA PET/CT in neuroblastoma comparison of conventional imaging with CT/MR. Clin Nucl Med. 2012;37:e71–8.

    Article  Google Scholar 

  12. Sofka CM, Semelka RC, Kelekis NL, Worawattanakul S, Chung CJ, Gold S, et al. Magnetic resonance imaging of neuroblastoma using current techniques. Magn Reson Imaging. 1999;17:193–8.

    Article  CAS  PubMed  Google Scholar 

  13. Pfluger T, Schmied C, Porn U, Leinsinger G, Vollmar C, Dresel S, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. Am J Roentgenol. 2002;181:1115–24.

    Article  Google Scholar 

  14. Siegel MJ, Jaju A. MR imaging of neuroblastic masses. Magn Reson Imaging Clin N Am. 2008;16(3):499–513.

    Article  PubMed  Google Scholar 

  15. Hiorns MP, Owens CM. Radiology of neuroblastoma in children. Eur Radiol. 2001;11(10):2071–81.

    Article  CAS  PubMed  Google Scholar 

  16. Lebtahi N, Gudinchet F, Nenadov-Beck M, et al. Evaluating bone marrow metastasis of neuroblastoma with iodine-123- MIBG scintigraphy and MRI. J Nucl Med. 1997;38:1389–92.

    CAS  PubMed  Google Scholar 

  17. Tanabe M, Takahashi H, Ohnuma N, Iwai J, Yoshida H. Evaluation of bone marrow metastasis of neuroblastoma and changes after chemotherapy by MRI. Med Pediatr Oncol. 1993;21:54–9.

    Article  CAS  PubMed  Google Scholar 

  18. Bleeker G, Tytgat GA, Adam JA, Caron HN, Kremer LC, Hooft L, van Dalen EC. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma. Cochrane Database Syst Rev. 2015;29(9):CD009263. https://doi.org/10.1002/14651858.CD009263.pub2.

    Article  Google Scholar 

  19. Bleeker G, Tytgat GA, Adam JA, Caron HN, Kremer LC, Hooft L, et al. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma. Cochrane Database Syst Rev. 2015;(9):CD009263. https://doi.org/10.1002/14651858.CD009263.pub2.

  20. Wilson JS, Gains JE, Moroz V, Wheatley K, Gaze MN. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer. 2014;50:801–15.

    Article  CAS  PubMed  Google Scholar 

  21. Castellani MR, Scarale A, Lorenzoni A, Maccauro M, Balaguer Guill J, Luksch R. Treatment with 131I-MIBG (indications, procedures and results). Chapter 19. In: Bombardieri E, editor. Clinical applications of nuclear medicine targeted therapy. Cham: Springer Nature; 2018.

    Google Scholar 

  22. Pfluger T, Piccardo A. Neuroblastoma: MIBG imaging and new tracers. Semin Nucl Med. 2017;47(2):143–57.

    Article  PubMed  Google Scholar 

  23. Piccardo A, Lopci E, Conte M, Foppiani L, Garaventa A, Cabria M, et al. PET/CT imaging in neuroblastoma. Q J Nucl Med Mol Imaging. 2013;57:29–39.

    CAS  PubMed  Google Scholar 

  24. Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med. 1980;21:349–53.

    CAS  PubMed  Google Scholar 

  25. Sharp SE, Parisi MT, Gelfand MJ, Yanik GA, Shulkin BL. Functional-metabolic imaging of neuroblastoma. Q J Nucl Med Mol Imaging. 2013;57:6–20.

    CAS  PubMed  Google Scholar 

  26. Shulkin BL, Shapiro B, Francis IR, et al. Primary extra-adrenal pheochromocytoma: positive I-123 MIBG imaging with negative I-131 MIBG imaging. Clin Nucl Med. 1986;11:851–4.

    Article  CAS  PubMed  Google Scholar 

  27. Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt M, Simon T, Hero B, et al. The prognostic impact of functional imaging with (123)ImIBG in patients with stage 4 neuroblastoma. 1 year of age on a high-risk treatment protocol: results of the German neuroblastoma trial NB97. Eur J Cancer. 2008;44:1552–8.

    Article  PubMed  Google Scholar 

  29. Boubaker A, Bischof DA. MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q J Nucl Med Mol Imaging. 2008;52:388–402.

    CAS  PubMed  Google Scholar 

  30. Kushner BH, Yeh SD, Kramer K, et al. Impact of metaiodobenzylguanidine scintigraphy on assessing response of high-risk neuroblastoma to dose-intensive induction chemotherapy. J Clin Oncol. 2003;21:1082–6.

    Article  PubMed  Google Scholar 

  31. Matthay KK, Edeline V, Lumbroso J, et al. Correlation of early metastatic response by 123I-metaiodobenzylguanidine scintigraphy with overall response and event-free survival in stage IV neuroblastoma. J Clin Oncol. 2003;21:2486–91.

    Article  PubMed  Google Scholar 

  32. Ady N, Zucker JM, Asselain B, et al. A new 123I-MIBG whole body scan scoring method: application to the prediction of the response of metastases to induction chemotherapy in stage IV neuroblastoma. Eur J Cancer. 1995;31A:256–61.

    Article  CAS  PubMed  Google Scholar 

  33. Lonergan GJ, Schwab CM, Suarez ES, Carlson CL. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics. 2002;22:911–34.

    Article  PubMed  Google Scholar 

  34. Bonnin F, Lumbroso J, Tenenbaum F, Hartmann O, Parmentier C. Refining interpretation of MIBG scans in children. J Nucl Med. 1994;35:803–10.

    CAS  PubMed  Google Scholar 

  35. Geatti O, Shapiro B, Shulkin B, et al. Gastrointestinal iodine-131-metaiodobenzylguanidine activity. Am J Physiol Imaging. 1988;3:188–91.

    CAS  PubMed  Google Scholar 

  36. Pfluger T, Schmied C, Porn U, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. AJR Am J Roentgenol. 2003;181:1115–24.

    Article  PubMed  Google Scholar 

  37. Granata C, Carlini C, Conte M, et al. False positive MIBG scan due to accessory spleen. Med Pediatr Oncol. 2001;37:138–9.

    Article  CAS  PubMed  Google Scholar 

  38. Paltiel HJ, Gelfand MJ, Elgazzar AH, et al. Neural crest tumors: I-123 MIBG imaging in children. Radiology. 1994;190:117–21.

    Article  CAS  PubMed  Google Scholar 

  39. Okuyama C, Sakane N, Yoshida T, et al. (123)I- or (125)I-metaiodobenzylguanidine visualization of brown adipose tissue. J Nucl Med. 2002;3:1234–40.

    Google Scholar 

  40. Okuyama C, Ushijima Y, Kubota T, et al. 123I-metaiodobenzylguanidine uptake in the nape of the neck of children: likely visualization of brown adipose tissue. J Nucl Med. 2003;44:1421–5.

    CAS  PubMed  Google Scholar 

  41. Piccardo A, Lopci E. Potential role of 18F-DOPA PET in neuroblastoma. Clin Transl Imag. 2016;4:79–86.

    Article  Google Scholar 

  42. Moyes JSE, Babich JW, Carter R, Meller ST, Agrawal M, McElwain TJ. Quantitative study of radioiodinated metaiodobenzylguanidine uptake in children with neuroblastoma: correlation with tumor histopathology. J Nucl Med. 1989;30:474–80.

    CAS  PubMed  Google Scholar 

  43. Lebtahi Hadj-Djilani N, Lebtahi NE, Bischof Delaloye A, Laurini R, Beck D. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nucl Med. 1995;22:322–9.

    Article  PubMed  Google Scholar 

  44. Geatti O, Shapiro B, Sisson JC, Hutchinson RJ, Mallette S, Eyre P, et al. Iodine-131 metaiodobenzylguanidine scintigraphy for the location of neuroblastoma: preliminary experience in ten cases. J Nucl Med. 1985;26:736–42.

    CAS  PubMed  Google Scholar 

  45. Khafagi FA, Shapiro B, Fig LM, Mallette S, Sisson JC. Labetalol reduces iodine-131 MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med. 1989;30:481–9.

    CAS  PubMed  Google Scholar 

  46. Biasotti S, Garaventa A, Villavecchia GP, Cabria M, Nantron M, De Bernardi B. False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol. 2000;35:153–5.

    Article  CAS  PubMed  Google Scholar 

  47. Sharp SE, Gelfand MJ, Shulkin BL. Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med. 2011;41:345–53.

    Article  PubMed  Google Scholar 

  48. Rufini V, Fisher GA, Shulkin BL, et al. Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. J Nucl Med. 1996;37:1464–8.

    CAS  PubMed  Google Scholar 

  49. Černý I, Prášek J, Kašpárková H. Superiority of SPECT/CT over planar 123ImIBG images in neuroblastoma patients with impact on Curie and SIOPEN score values. Nuklearmedizin. 2016;55:151–7.

    PubMed  Google Scholar 

  50. Gelfand MJ, Elgazzar AH, Kriss VM, et al. Iodine-123-MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med. 1994;35:1753–7.

    CAS  PubMed  Google Scholar 

  51. Hugosson C, Nyman R, Jorulf H, et al. Imaging of abdominal neuroblastoma in children. Acta Radiol. 1999;40:534–42.

    Article  CAS  PubMed  Google Scholar 

  52. Yanik GA, Parisi MT, Shulkin BL, Naranjo A, Kreissman SG, London WB, et al. Semiquantitative mIBG scoring as a prognostic indicator in patients with stage 4 neuroblastoma: a report from the Children’s oncology group. J Nucl Med. 2013;54:541–8.

    Article  CAS  PubMed  Google Scholar 

  53. Ladenstein R, Lambert B, Pötschger U, Castellani MR, Lewington V, Bar-Sever Z, et al. Validation of the mIBG skeletal SIOPEN scoring method in two independent high-risk neuroblastoma populations: the SIOPEN/HR-NBL1 and COG-A3973 trials. Eur J Nucl Med Mol Imaging. 2018;45:292.

    Article  PubMed  Google Scholar 

  54. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high-risk Neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med. 1999;341:1165–73.

    Article  CAS  PubMed  Google Scholar 

  55. Pearson AD, Pinkerton CR, Lewis IJ, Imeson J, Ellershaw C, Machin D. High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial. Lancet Oncol. 2008;9:247–56.

    Article  CAS  PubMed  Google Scholar 

  56. Zage PE, Kletzel M, Murray K, Marcus R, Castleberry R, Zhang Y, et al. Outcomes of the POG 9340/9341/9342trials for children with high-risk neuroblastoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51:747–53.

    Article  PubMed  PubMed Central  Google Scholar 

  57. London WB, Castel V, Monclair T, Ambros PF, Pearson AD, Cohn SL, et al. Clinical and biologic features predictive of survival after relapse of neuroblastoma: a report from the International Neuroblastoma Risk Group project. J Clin Oncol. 2011;29:3286–92.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kushner BH, Kramer K, Modak S, Cheung NK. Sensitivity of surveillance studies for detecting asymptomatic and unsuspected relapse of high-risk neuroblastoma. J Clin Oncol. 2009;27:1041–6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Piccardo A, Puntoni M, Lopci E, Conte M, Foppiani L, Sorrentino S, et al. Prognostic value of 18F-DOPA PET/CT at the time of recurrence in patients affected by neuroblastoma. Eur J Nucl Med Mol Imaging. 2014;41:1046–56.

    Article  PubMed  Google Scholar 

  60. LaBrosse EH, Comoy E, Bohuon C, Zucker JM, Schweisguth O. Catecholamine metabolism in neuroblastoma. J Natl Cancer Inst. 1976;57:633–8.

    Article  CAS  PubMed  Google Scholar 

  61. Brodeur GM. Neuroblastoma and other peripheral neuroectodermal tumors. In: Fernbach DJ, Vietti TJ, editors. Clinical pediatric oncology. 4th ed. St. Louis, MO: CV Mosby; 1991. p. 337.

    Google Scholar 

  62. Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY, et al. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med. 2008;49:573–86.

    Article  CAS  PubMed  Google Scholar 

  63. Timmers AJLM, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of phaeochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94:4757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fiebrich H, Brouwers AH, Kerstens MN, Pijl ME, Kema IP, de Jong JR, et al. 6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with 123I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumours causing catecholamine excess. J Clin Endocrinol Metab. 2009;94:3922–30.

    Article  CAS  PubMed  Google Scholar 

  65. Treglia G, Castaldi P, Villani MF, Perotti G, de Waure C, Filice A, et al. Comparison of 18F-DOPA, 18F-FDG and 68Ga-somatostatin analogue PET/CT in patients with recurrent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2012;39:569–80.

    Article  CAS  PubMed  Google Scholar 

  66. Piccardo A, Lopci E, Conte M, Garaventa A, Foppiani L, Altrinetti V, et al. Comparison of (18)F-dopa PET/CT and (123)I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging. 2012;39:57–61.

    Article  CAS  PubMed  Google Scholar 

  67. Piccardo A, Lopci E, Conte M, Cabria M, Cistaro A, Garaventa A, Villavecchia G. al. Bone and lymph node metastases from neuroblastoma detected by 18F-DOPA-PET/CT and confirmed by posttherapy 131I-MIBG but negative on diagnostic 123I-MIBG. Clin Nucl Med. 2014;39(1):e80–3.

    Article  PubMed  Google Scholar 

  68. Lu MY, Liu YL, Chang HH, et al. Characterization of Neuroblastic Tumors Using 18F-FDOPA PET. J Nucl Med. 2013;54:42–9.

    Article  CAS  PubMed  Google Scholar 

  69. Piccardo A, Morana G, Massollo M, Pescetto M, Conte M, Garaventa A. Brain metastasis from neuroblastoma depicted by (18)F-DOPA PET/CT. Nucl Med Mol Imaging. 2015;49(3):241–2.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lewington V, Bar Sever Z, Lynch T, Giammarile F, McEwan A, Shulkin B, et al. Development of a semi-quantitative I-123 mIBG reporting method in high risk neuroblastoma. J Nucl Med. 2009;36:334.

    Article  Google Scholar 

  71. Piccardo A, Lopci E, Foppiani L, Morana G. Conte M (18)F-DOPA PET/CT for assessment of response to induction chemotherapy in a child with high-risk neuroblastoma. Pediatr Radiol. 2014;44:355–61.

    Article  PubMed  Google Scholar 

  72. Lopci E, D’Ambrosio D, Nanni C, Chiti A, Pession A, Marengo M, et al. Feasibility of carbidopa premedication in pediatric patients: a pilot study. Cancer Biother Radiopharm. 2012;27:729–33.

    Article  CAS  PubMed  Google Scholar 

  73. ICRP. Radiation dose to patients from radiopharmaceuticals - addendum 3 to ICRP Publication 53. ICRP Publication 106. Ann ICRP. 2008;38(1-2)

    Google Scholar 

  74. ICRP. Radiation Dose to Patients from Radiopharmaceuticals (Addendum to ICRP Publication 53). ICRP Publication 80. Ann ICRP. 1998;28(3)

    Google Scholar 

  75. Huang YY, Tzen KY, Liu YL, Chiu CH, Tsai CL, Wen HP, et al. Impact of residual 18F-fluoride in 18F-FDOPA for the diagnosis of neuroblastoma. Ann Nucl Med. 2015;29:489–98.

    Article  CAS  PubMed  Google Scholar 

  76. Gordon I, Peters AM, Gutman A, Morony S, Dicks-Mireaux C, Pritchard J. Skeletal assessment in neuroblastoma – the pitfalls of iodine-123-MIBG scans. J Nucl Med. 1990;31:129–34.

    CAS  PubMed  Google Scholar 

  77. Melzer HI, Coppenrath E, Schmid I, Albert MH, von Schweinitz D, Tudball C, et al. 123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. 2011;38:1648–58.

    Article  PubMed  Google Scholar 

  78. Lebtahi Hadj-Djilani N, Lebtahi NE, Delaloye AB, Laurini R, Beck D, et al. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nucl Med. 1995;22:322–9.

    Article  PubMed  Google Scholar 

  79. Giammarile F, Lumbroso J, Ricard M, Aubert B, Hartmann O, Schlumberger M, et al. Radioiodinated metaiodobenzylguanidine in neuroblastoma: influence of high dose on tumour site detection. Eur J Nucl Med. 1995;22:1180–3.

    Article  CAS  PubMed  Google Scholar 

  80. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123IMIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50:1237–43.

    Article  PubMed  Google Scholar 

  81. Taggart DR, Han MM, Quach A, Groshen S, Ye W, Villablanca JG, et al. Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F] fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol. 2009;27:5343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Papathanasiou ND, Gaze MN, Sullivan K, Aldridge M, Waddington W, Almuhaideb A, et al. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med. 2011;52:519–25.

    Article  CAS  PubMed  Google Scholar 

  83. Colavolpe C, Guedj E, Cammilleri S, Taïeb D, Mundler O, Coze C. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer. 2008;51:828–31.

    Article  PubMed  Google Scholar 

  84. Mc Dowell H, Losty P, Barnes N, Kokai G. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG negative. Pediatr Blood Cancer. 2009;52:552.

    Article  PubMed  Google Scholar 

  85. Schwarz KB, Driver I, Lewis IJ, Taylor RE. Positive MIBG scanning at the time of relapse in neuroblastoma which was MIBG negative at diagnosis. Br J Radiol. 1997;70:90–2.

    Article  CAS  PubMed  Google Scholar 

  86. Kushner BH, Yeung HW, Larson SM, Kramer K, Cheung NK. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol. 2001;219:3397–405.

    Article  Google Scholar 

  87. Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med. 2004;45:1172–88.

    PubMed  Google Scholar 

  88. Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, Sisson JC, et al. Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology. 1996;199:743–50.

    Article  CAS  PubMed  Google Scholar 

  89. Adams S, Baum RP, Hertel A, Schumm-Dräger PM, Usadel KH, Hör G. Metabolic (PET) and receptor (SPET) imaging of well- and less well-differentiated tumours: comparison with the expression of the Ki-67 antigen. Nucl Med Commun. 1998;19:641–7.

    Article  CAS  PubMed  Google Scholar 

  90. Kayani I, Bomanji JB, Groves A, Conway G, Gacinovic S, Win T, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer. 2008;112:2447–55.

    Article  PubMed  Google Scholar 

  91. Krieger-Hinck N, Gustke H, Valentiner U, Mikecz P, Buchert R, Mester J, et al. Visualisation of neuroblastoma growth in a Scid mouse model using [18F]FDG and [18F]FLT-PET. Anticancer Res. 2006;26:3467–72.

    PubMed  Google Scholar 

  92. Wagner LM, Danks MK. New therapeutic targets for the treatment of high-risk neuroblastoma. J Cell Biochem. 2009;107:46–57.

    Article  CAS  PubMed  Google Scholar 

  93. Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20:716–31.

    Article  CAS  PubMed  Google Scholar 

  94. O’Dorisio MS, Chen F, O’Dorisio TM, Wray D, Qualman SJ. Characterization of somatostatin receptors on human neuroblastoma tumors. Cell Growth Differ. 1994;5:1–8.

    PubMed  Google Scholar 

  95. Albers AR, O’Dorisio MS, Balster DA, Caprara M, Gosh P, Chen F, et al. Somatostatin receptor gene expression in neuroblastoma. Regul Pept. 2000;88:61–73.

    Article  CAS  PubMed  Google Scholar 

  96. Kropp J, Hofmann M, Bihl H. Comparison of MIBG and pentetreotide scintigraphy in children with neuroblastoma. Is the expression of somatostatin receptors a prognostic factor? Anticancer Res. 1997;17:1583–8.

    CAS  PubMed  Google Scholar 

  97. Shalaby-Rana E, Majd M, Andrich MP, Movassaghi N. In-111 pentetreotide scintigraphy in patients with neuroblastoma. Comparison with I-131 MIBG, N-MYC oncogene amplification, and patient outcome. Clin Nucl Med. 1997;22:315–9.

    Article  CAS  PubMed  Google Scholar 

  98. Storch D, Béhé M, Walter MA, Chen J, Powell P, Mikolajczak R, et al. Evaluation of [99mTc/EDDA/HYNIC0]octreotide derivatives compared with [111In- DOTA0,Tyr3, Thr8]octreotide and [111In-DTPA0]octreotide: does tumor or pancreas uptake correlate with the rate of internalization? J Nucl Med. 2005;46:1561–9.

    CAS  PubMed  Google Scholar 

  99. Kroiss A, Putzer D, Uprimny C, Decristoforo C, Gabriel M, Santner W, et al. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTATyr3-octreotide positron emission tomography and 123I metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging. 2011;38:865–73.

    Article  CAS  PubMed  Google Scholar 

  100. Kong G, Hofman MS, Murray WK, Wilson S, Wood P, Downie P, et al. Initial experience with gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87–96.

    Article  CAS  PubMed  Google Scholar 

  101. Gains JE, Bomanji JB, Fersht NL, Sullivan T, D’Souza D, Sullivan KP, et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med. 2011;52(7):1041–7.

    Article  PubMed  Google Scholar 

  102. Shulkin BL, Wieland DM, Baro ME, Ungar DR, Mitchell DS, Dole MG, et al. PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med. 1996;37:16–21.

    CAS  PubMed  Google Scholar 

  103. Franzius C, Hermann K, Weckesser M, Kopka K, Juergens KU, Vormoor J, et al. Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med. 2006;47:1635–42.

    PubMed  Google Scholar 

  104. Cistaro A, Quartuccio N, Caobelli F, Piccardo A, Paratore R, Coppolino P, et al. 124I-MIBG: a new promising positron-emitting radiopharmaceutical for the evaluation of neuroblastoma. Nucl Med Rev Cent East Eur. 2015;18:102–6.

    Article  PubMed  Google Scholar 

  105. Lopci E, Chiti A, Castellani MR, Pepe G, Antunovic L, Fanti S, et al. Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 14 T. 86Y/90Y antibodies. Eur J Nucl Med Mol Imaging. 2011;38:S28–40.

    Article  PubMed  CAS  Google Scholar 

  106. Herzog H, Tellmann L, Scholten B, Coenen HH, Qaim SM. PET imaging problems with the non-standard positron emitters Yttrium-86 and Iodine-124. Q J Nucl Med Mol Imaging. 2008;52:159–65.

    CAS  PubMed  Google Scholar 

  107. Lee CL, Wahnishe H, Sayre GA, Cho HM, Kim HJ, Hernandez-Pampaloni M, et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys. 2010;37:4861–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnoldo Piccardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piccardo, A., Castellani, R., Bottoni, G., Massollo, M., Follacchio, G.A., Lopci, E. (2020). Nuclear Medicine Procedures in Neuroblastoma. In: Sarnacki, S., Pio, L. (eds) Neuroblastoma. Springer, Cham. https://doi.org/10.1007/978-3-030-18396-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18396-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18395-0

  • Online ISBN: 978-3-030-18396-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics