Skip to main content

Radiology

  • Chapter
  • First Online:
Neuroblastoma

Abstract

Medical imaging plays an essential role in the management of neuroblastic tumours. Imaging is usually the first step for initial diagnosis and disease staging, including identification of image-defined risk factors (see Part II). Imaging is used during percutaneous needle biopsy procedures to guide the needle tract and select the optimal target areas (see Sect. 5.4). Response assessment during chemotherapy is based on both anatomical (tumour volume) and functional imaging (nuclear medicine). Imaging is used for postoperative assessment to identify potential residual disease and surgical complications. The treatment planning for radiation therapy that is recommended for high-risk neuroblastoma (NB) is based on imaging data. Finally, long-term post treatment follow-up includes recurrent imaging which should be adjusted to the risk of local or distant relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lonergan GJ, Schwab CM, Suarez ES, Carlson CL. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics. 2002;22:911–34.

    Article  PubMed  Google Scholar 

  2. Hiorns MP, Owens CM. Radiology of neuroblastoma in children. Eur Radiol. 2001;11:2071–81.

    Article  CAS  PubMed  Google Scholar 

  3. Swift CC, Eklund MJ, Kraveka JM, Alazraki AL. Updates in diagnosis, management, and treatment of neuroblastoma. Radiographics. 2018;38:566–80.

    Article  PubMed  Google Scholar 

  4. Brody AS, Frush DP, Huda W, et al. Radiation risk to children from computed tomography. Pediatrics. 2007;120:677–82.

    Article  PubMed  Google Scholar 

  5. Journy N, Roue T, Cardis E, et al. Childhood CT scans and cancer risk: impact of predisposing factors for cancer on the risk estimates. J Radiol Prot. 2016;36:N1–7.

    Article  CAS  PubMed  Google Scholar 

  6. Brisse HJ, Aubert B. Niveaux d’exposition en tomodensitométrie multicoupes pédiatrique: résultats de l’enquête dosimétrique SFIPP/IRSN 2007-2008 [CT exposure from pediatric MDCT: results from the 2007-2008 SFIPP/ISRN survey]. J Radiol. 2009;90:207–15.

    Article  CAS  PubMed  Google Scholar 

  7. Goske MJ, Applegate KE, Boylan J, et al. The image gently campaign: working together to change practice. Am J Roentgenol. 2008;190:273–4.

    Article  Google Scholar 

  8. Gay F, Pavia Y, Pierrat N, et al. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT. Eur Radiol. 2014;24:102–11.

    Article  CAS  PubMed  Google Scholar 

  9. Sofka CM, Semelka RC, Kelekis NL, et al. Magnetic resonance imaging of neuroblastoma using current techniques. Magn Reson Imaging. 1999;17:193–8.

    Article  CAS  PubMed  Google Scholar 

  10. Siegel MJ, Jaju A. MR imaging of neuroblastic masses. Magn Reson Imaging Clin N Am. 2008;16:499–513. vi.

    Article  PubMed  Google Scholar 

  11. Berdon WE, Ruzal-Shapiro C, Abramson SJ, Garvin J. The diagnosis of abdominal neuroblastoma: relative roles of ultrasonography, CT, and MRI. Urol Radiol. 1992;14:252–62.

    Article  CAS  PubMed  Google Scholar 

  12. Siegel MJ, Ishwaran H, Fletcher BD, et al. Staging of neuroblastoma at imaging: report of the Radiology Diagnostic Oncology Group. Radiology. 2002;223:168–75.

    Article  PubMed  Google Scholar 

  13. Brisse HJ, McCarville MB, Granata C, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology. 2011;261:243–57.

    Article  PubMed  Google Scholar 

  14. Brown RE Jr. Safety considerations of anesthetic drugs in children. Expert Opin Drug Saf. 2017;16:445–54.

    Article  CAS  PubMed  Google Scholar 

  15. Sinner B, Becke K, Engelhard K. General anaesthetics and the developing brain: an overview. Anaesthesia. 2014;69:1009–22.

    Article  CAS  PubMed  Google Scholar 

  16. Vutskits L, Xie Z. Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci. 2016;17:705–17.

    Article  CAS  PubMed  Google Scholar 

  17. Callahan MJ, MacDougall RD, Bixby SD, et al. Ionizing radiation from computed tomography versus anesthesia for magnetic resonance imaging in infants and children: patient safety considerations. Pediatr Radiol. 2018;48:21–30.

    Article  PubMed  Google Scholar 

  18. Kornreich L, Horev G, Kaplinsky C, et al. Neuroblastoma: evaluation with contrast enhanced MR imaging. Pediatr Radiol. 1991;21:566–9.

    Article  CAS  PubMed  Google Scholar 

  19. Neubauer H, Li M, Muller VR, et al. Diagnostic value of diffusion-weighted MRI for tumor characterization, differentiation and monitoring in pediatric patients with neuroblastic tumors. Rofo. 2017;189:640–50.

    Article  PubMed  Google Scholar 

  20. Olchowy C, Cebulski K, Lasecki M, et al. The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity - a systematic review. PLoS One. 2017;12:e0171704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Flood TF, Stence NV, Maloney JA, Mirsky DM. Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology. 2017;282:222–8.

    Article  PubMed  Google Scholar 

  22. McDonald RJ, McDonald JS, Dai D, et al. Comparison of gadolinium concentrations within multiple rat organs after intravenous administration of linear versus macrocyclic gadolinium chelates. Radiology. 2017;0:161594.

    Google Scholar 

  23. Runge VM. Critical questions regarding gadolinium deposition in the brain and body after injections of the gadolinium-based contrast agents, safety, and clinical recommendations in consideration of the EMA’s pharmacovigilance and risk assessment committee recommendation for suspension of the marketing authorizations for 4 linear agents. Invest Radiol. 2017;52:317–23.

    Article  CAS  PubMed  Google Scholar 

  24. Tibussek D, Rademacher C, Caspers J, et al. Gadolinium brain deposition after macrocyclic gadolinium administration: a pediatric case-control study. Radiology. 2017;0:161151.

    Google Scholar 

  25. Mendichovszky IA, Marks SD, Simcock CM, Olsen OE. Gadolinium and nephrogenic systemic fibrosis: time to tighten practice. Pediatr Radiol. 2008;38:489.

    Article  PubMed  Google Scholar 

  26. Dumba M, Jawad N, McHugh K. Neuroblastoma and nephroblastoma: a radiological review. Cancer Imaging. 2015;15:5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    Article  PubMed  Google Scholar 

  28. Humphries PD, Sebire NJ, Siegel MJ, Olsen OE. Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology. 2007;245:848–54.

    Article  PubMed  Google Scholar 

  29. Uhl M, Altehoefer C, Kontny U, et al. MRI-diffusion imaging of neuroblastomas: first results and correlation to histology. Eur Radiol. 2002;12:2335–8.

    Article  CAS  PubMed  Google Scholar 

  30. Gahr N, Darge K, Hahn G, et al. Diffusion-weighted MRI for differentiation of neuroblastoma and ganglioneuroblastoma/ganglioneuroma. Eur J Radiol. 2011;79:443.

    Article  PubMed  Google Scholar 

  31. Demir S, Altinkaya N, Kocer NE, et al. Variations in apparent diffusion coefficient values following chemotherapy in pediatric neuroblastoma. Diagn Interv Radiol. 2015;21:184–8.

    Article  PubMed  Google Scholar 

  32. Olivier P, Colarinha P, Fettich J, et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging. 2003;30:B45–50.

    Article  PubMed  Google Scholar 

  33. Franzius C, Schmidt M, Hero B, et al. Procedure guidelines for MIBG-scintigraphy in children. Nuklearmedizin. 2008;47:132–8.

    Article  CAS  PubMed  Google Scholar 

  34. Matthay KK, Shulkin B, Ladenstein R, et al. Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer. 2010;102:1319–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lumbroso J, Guermazi F, Hartmann O, et al. Sensitivity and specificity of meta-iodobenzylguanidine (mIBG) scintigraphy in the evaluation of neuroblastoma: analysis of 115 cases. Bull Cancer. 1988;75:97–106.

    CAS  PubMed  Google Scholar 

  36. Jacobs A, Delree M, Desprechins B, et al. Consolidating the role of ∗I-MIBG-scintigraphy in childhood neuroblastoma: five years of clinical experience. Pediatr Radiol. 1990;20:157–9.

    Article  CAS  PubMed  Google Scholar 

  37. McHugh K. Renal and adrenal tumours in children. Cancer Imaging. 2007;7:41–51.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mehta K, Haller JO, Legasto AC. Imaging neuroblastoma in children. Crit Rev Comput Tomogr. 2003;44:47–61.

    Article  PubMed  Google Scholar 

  39. Brisse H, Edeline V, Michon J, et al. Current strategy for the imaging of neuroblastoma. J Radiol. 2001;82:447–54.

    CAS  PubMed  Google Scholar 

  40. Papaioannou G, McHugh K. Neuroblastoma in childhood: review and radiological findings. Cancer Imaging. 2005;5:116–27.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cohn SL, Pearson AD, London WB, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moroz V, Machin D, Faldum A, et al. Changes over three decades in outcome and the prognostic influence of age-at-diagnosis in young patients with neuroblastoma: a report from the International Neuroblastoma Risk Group Project. Eur J Cancer. 2011;47:561–71.

    Article  PubMed  Google Scholar 

  43. Brisse HJ, Blanc T, Schleiermacher G, et al. Radiogenomics of neuroblastomas: relationships between imaging phenotypes, tumor genomic profile and survival. PLoS One. 2017;12:e0185190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sauvat F, Brisse H, Magdeleinat P, et al. The transmanubrial approach: a new operative approach to cervicothoracic neuroblastoma in children. Surgery. 2006;139:109–14.

    Article  PubMed  Google Scholar 

  45. Maris JM, Kyemba SM, Rebbeck TR, et al. Molecular genetic analysis of familial neuroblastoma. Eur J Cancer. 1997;33:1923–8.

    Article  CAS  PubMed  Google Scholar 

  46. Hiyama E, Yokoyama T, Hiyama K, et al. Multifocal neuroblastoma: biologic behavior and surgical aspects. Cancer. 2000;88:1955–63.

    Article  CAS  PubMed  Google Scholar 

  47. Wu YH, Song B, Xu J, et al. Retroperitoneal neoplasms within the perirenal space in infants and children: differentiation of renal and non-renal origin in enhanced CT images. Eur J Radiol. 2010;75:279–86.

    Article  PubMed  Google Scholar 

  48. Sauvat F, Sarnacki S, Brisse H, et al. Outcome of suprarenal localized masses diagnosed during the perinatal period: a retrospective multicenter study. Cancer. 2002;94:2474–80.

    Article  PubMed  Google Scholar 

  49. Granata C, Fagnani AM, Gambini C, et al. Features and outcome of neuroblastoma detected before birth. J Pediatr Surg. 2000;35:88–91.

    Article  CAS  PubMed  Google Scholar 

  50. Nadler EP, Barksdale EM. Adrenal masses in the newborn. Semin Pediatr Surg. 2000;9:156–64.

    Article  CAS  PubMed  Google Scholar 

  51. Curtis MR, Mooney DP, Vaccaro TJ, et al. Prenatal ultrasound characterization of the suprarenal mass: distinction between neuroblastoma and subdiaphragmatic extralobar pulmonary sequestration. J Ultrasound Med. 1997;16:75–83.

    Article  CAS  PubMed  Google Scholar 

  52. Deeg KH, Bettendorf U, Hofmann V. Differential diagnosis of neonatal adrenal haemorrhage and congenital neuroblastoma by colour coded Doppler sonography and power Doppler sonography. Eur J Pediatr. 1998;157:294–7.

    Article  CAS  PubMed  Google Scholar 

  53. Lin JN, Lin GJ, Hung IJ, Hsueh C. Prenatally detected tumor mass in the adrenal gland. J Pediatr Surg. 1999;34:1620–3.

    Article  CAS  PubMed  Google Scholar 

  54. Daneman A, Baunin C, Lobo E, et al. Disappearing suprarenal masses in fetuses and infants. Pediatr Radiol. 1997;27:675–81.

    Article  CAS  PubMed  Google Scholar 

  55. Brunklaus A, Pohl K, Zuberi SM, de Sousa C. Investigating neuroblastoma in childhood opsoclonus-myoclonus syndrome. Arch Dis Child. 2012;97:461–3.

    Article  PubMed  Google Scholar 

  56. Swart JF, de Kraker J, van der Lely N. Metaiodobenzylguanidine total-body scintigraphy required for revealing occult neuroblastoma in opsoclonus-myoclonus syndrome. Eur J Pediatr. 2002;161:255–8.

    Article  PubMed  Google Scholar 

  57. Park JR, Bagatell R, Cohn SL, et al. Revisions to the international neuroblastoma response criteria: a consensus statement from the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol. 2017;35:2580–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brodeur GM, Seeger RC, Barrett A, et al. International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J Clin Oncol. 1988;6:1874–81.

    Article  CAS  PubMed  Google Scholar 

  59. Brodeur GM, Pritchard J, Berthold F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.

    Article  CAS  PubMed  Google Scholar 

  60. Monclair T, Brodeur GM, Ambros PF, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27:298–303.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Goo HW, Choi SH, Ghim T, et al. Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol. 2005;35:766–73.

    Article  PubMed  Google Scholar 

  62. Lau JJ, Trobe JD, Ruiz RE, et al. Metastatic neuroblastoma presenting with binocular blindness from intracranial compression of the optic nerves. J Neuroophthalmol. 2004;24:119–24.

    Article  PubMed  Google Scholar 

  63. DuBois SG, Kalika Y, Lukens JN, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21:181–9.

    Article  CAS  PubMed  Google Scholar 

  64. Dubois SG, London WB, Zhang Y, et al. Lung metastases in neuroblastoma at initial diagnosis: a report from the International Neuroblastoma Risk Group (INRG) project. Pediatr Blood Cancer. 2008;51:589–92.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kammen BF, Matthay KK, Pacharn P, et al. Pulmonary metastases at diagnosis of neuroblastoma in pediatric patients: CT findings and prognosis. AJR Am J Roentgenol. 2001;176:755–9.

    Article  CAS  PubMed  Google Scholar 

  66. Matthay KK, Brisse H, Couanet D, et al. Central nervous system metastases in neuroblastoma: radiologic, clinical, and biologic features in 23 patients. Cancer. 2003;98:155–65.

    Article  PubMed  Google Scholar 

  67. D’Ambrosio N, Lyo JK, Young RJ, et al. Imaging of Metastatic CNS Neuroblastoma. Am J Roentgenol. 2010;194:1223–9.

    Article  Google Scholar 

  68. Aronson MR, Smoker WR, Oetting GM. Hemorrhagic intracranial parenchymal metastases from primary retroperitoneal neuroblastoma. Pediatr Radiol. 1995;25:284–5.

    Article  CAS  PubMed  Google Scholar 

  69. Kellie SJ, Hayes FA, Bowman L, et al. Primary extracranial neuroblastoma with central nervous system metastases characterization by clinicopathologic findings and neuroimaging. Cancer. 1991;68:1999–2006.

    Article  CAS  PubMed  Google Scholar 

  70. Quackenbush KE, Luna-Fineman S, Magee JF, et al. Neuroblastoma involvement of the falx cerebri. Pediatr Blood Cancer. 2009;53:1337–9.

    Article  PubMed  Google Scholar 

  71. Vo KT, Matthay KK, Neuhaus J, et al. Clinical, biologic, and prognostic differences on the basis of primary tumor site in neuroblastoma: a report from the international neuroblastoma risk group project. J Clin Oncol. 2014;32:3169–76.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Adams GA, Shochat SJ, Smith EI, et al. Thoracic neuroblastoma: a Pediatric Oncology Group study. J Pediatr Surg. 1993;28:372–7; discussion 377–378.

    Article  CAS  PubMed  Google Scholar 

  73. Morris JA, Shcochat SJ, Smith EI, et al. Biological variables in thoracic neuroblastoma: a Pediatric Oncology Group study. J Pediatr Surg. 1995;30:296–302; discussion 302–293.

    Article  CAS  PubMed  Google Scholar 

  74. Haberle B, Hero B, Berthold F, von Schweinitz D. Characteristics and outcome of thoracic neuroblastoma. Eur J Pediatr Surg. 2002;12:145–50.

    Article  CAS  PubMed  Google Scholar 

  75. Cruccetti A, Kiely EM, Spitz L, et al. Pelvic neuroblastoma: low mortality and high morbidity. J Pediatr Surg. 2000;35:724–8.

    Article  CAS  PubMed  Google Scholar 

  76. Haase GM, O’Leary MC, Stram DO, et al. Pelvic neuroblastoma--implications for a new favorable subgroup: a Children’s Cancer Group experience. Ann Surg Oncol. 1995;2:516–23.

    Article  CAS  PubMed  Google Scholar 

  77. Leclair MD, Hartmann O, Heloury Y, et al. Localized pelvic neuroblastoma: excellent survival and low morbidity with tailored therapy--the 10-year experience of the French Society of Pediatric Oncology. J Clin Oncol. 2004;22:1689–95.

    Article  PubMed  Google Scholar 

  78. Abramson SJ, Berdon WE, Ruzal-Shapiro C, et al. Cervical neuroblastoma in eleven infants--a tumor with favorable prognosis. Clinical and radiologic (US, CT, MRI) findings. Pediatr Radiol. 1993;23:253–7.

    Article  CAS  PubMed  Google Scholar 

  79. Moukheiber AK, Nicollas R, Roman S, et al. Primary pediatric neuroblastic tumors of the neck. Int J Pediatr Otorhinolaryngol. 2001;60:155–61.

    Article  CAS  PubMed  Google Scholar 

  80. Qureshi SS, Kembhavi S, Ramadwar M, et al. Outcome and morbidity of surgical resection of primary cervical and cervicothoracic neuroblastoma in children: a comparative analysis. Pediatr Surg Int. 2014;30:267–73.

    Article  PubMed  Google Scholar 

  81. Yoo SY, Kim JS, Sung KW, et al. The degree of tumor volume reduction during the early phase of induction chemotherapy is an independent prognostic factor in patients with high-risk neuroblastoma. Cancer. 2013;119:656–64.

    Article  PubMed  Google Scholar 

  82. Ladenstein R, Lambert B, Potschger U, et al. Validation of the mIBG skeletal SIOPEN scoring method in two independent high-risk neuroblastoma populations: the SIOPEN/HR-NBL1 and COG-A3973 trials. Eur J Nucl Med Mol Imaging. 2018;45:292–305.

    Article  PubMed  Google Scholar 

  83. Yanik GA, Parisi MT, Naranjo A, et al. Validation of post-induction Curie scores in high risk neuroblastoma. A Children’s Oncology Group (COG) and SIOPEN group report on SIOPEN/HR-NBL1. J Nucl Med. 2018;59:502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  PubMed  Google Scholar 

  85. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  CAS  PubMed  Google Scholar 

  86. Trout AT, Towbin AJ, Klingbeil L, et al. Single and multidimensional measurements underestimate neuroblastoma response to therapy. Pediatr Blood Cancer. 2017;64:18–24.

    Article  PubMed  Google Scholar 

  87. Federico SM, Brady SL, Pappo A, et al. The role of chest computed tomography (CT) as a surveillance tool in children with high-risk neuroblastoma. Pediatr Blood Cancer. 2015;62:976–81.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Owens C, Li BK, Thomas KE, Irwin MS. Surveillance imaging and radiation exposure in the detection of relapsed neuroblastoma. Pediatr Blood Cancer. 2016;63:1786–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Granata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brisse, H.J., Verhagen, M., McHugh, K., Granata, C. (2020). Radiology. In: Sarnacki, S., Pio, L. (eds) Neuroblastoma. Springer, Cham. https://doi.org/10.1007/978-3-030-18396-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18396-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18395-0

  • Online ISBN: 978-3-030-18396-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics