Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 258))

Abstract

The homogenization of nonlinear heterogeneous materials is by an order of magnitude tougher than the homogenization of linear ones. The main reason is that in the linear case, the general form of the homogenized (or effective) behavior of heterogeneous materials is a priori known, and it suffices to determine a set of effective moduli by considering a finite number of macroscopic loading modes. In contrast, in the nonlinear case, the general form of the homogenized behavior of heterogeneous materials is unknown and the determination of the homogenized behavior requires solving nonlinear partial differential equations with random or periodic coefficients and entails considering, in principle, an infinite number of macroscopic loading modes. Then, the superposition principle, which was used as a basis in the previous chapters to construct the homogenized behavior no more applies. The central problem is to define the constitutive relationship to be used at the macroscale at each integration point of the structure, given an RVE and a description of the nonlinear behavior of each phase. The development of nonlinear computational homogenization methods has been an active topic of research since the end of the 90’s and many issues still remain at the time this book is written.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yvonnet J, Gonzalez D, He Q-C (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198:2723–2737

    MATH  Google Scholar 

  2. Smit R, Brekelmans W, Meijer H (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155:181–192

    MATH  Google Scholar 

  3. Feyel F (1999) Multiscale FE\(^2\) elastoviscoplastic analysis of composite structure. Comput Mater Sci 16(1–4):433–454

    Google Scholar 

  4. Feyel F, Chaboche J-L (2000) FE\(^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330

    MATH  Google Scholar 

  5. Feyel F (2003) A multilevel finite element method (FE\(^2\)) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28–30):3233–3244

    MATH  Google Scholar 

  6. Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analysis of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464

    MATH  Google Scholar 

  7. Ghosh S, Lee K, Raghavan P (2001) A multilevel computational model for multi-scale damage analysis in composite and porous media. Int J Solids Struct 38:2335–2385

    MATH  Google Scholar 

  8. Yvonnet J, He Q-C (2007) The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J Comput Phys 223:341–368

    MathSciNet  MATH  Google Scholar 

  9. Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    MATH  Google Scholar 

  10. Covezzi F, de Miranda S, Fritzen F, Marfia S, Sacco E (2018) Comparison of reduced order homogenization techniques: prbmor, nutfa and mxtfa. Meccanica 53(6):1291–1312

    Google Scholar 

  11. Leuschner M, Fritzen F (2017) Reduced order homogenization for viscoplastic composite materials including dissipative imperfect interfaces. Mech Mater 104:121–138

    Google Scholar 

  12. Kodjo J, Yvonnet J, Karkri M, Sab K (2018) Multiscale modeling of the thermomechanical behavior in heterogeneous media embedding phase change materials particles. J Comput Phys (2018). Accepted

    Google Scholar 

  13. Aadmi M, Karkri M (2014) El Hammouti M (2014) Heat transfer characteristics of thermal energy storage of a composite phase change materials: numerical and experimental investigations. Energy 72:381–392

    Google Scholar 

  14. Joulin A, Younsi Z, Zalewski L, Lassue S, Rousse DR, Cavrot J-P (2011) Experimental and numerical investigation of a phase change material: thermal energy storage and release. Appl Energy 88(7):2454–2462

    Google Scholar 

  15. Viswanath R, Jaluria Y (1993) A comparison of different solution methodologies for melting and solidification problems in enclosures. Numer Heat Transf, Part B: Fundam 24(1):77–105

    Google Scholar 

  16. Ding Y, Gear JA, Tran KN (2008) A finite element modeling of thermal conductivity of fabrics embedded with phase change material. In: Proceedings of the 8th biennial engineering mathematics and applications conference, EMAC-2007, ANZIAM J. vol 49, pp C439–C456

    Google Scholar 

  17. Ozdemir I, Brekelmans WAM, Geers MGD (2008) Computational homogenization for heat conduction in heterogeneous solids. Int J Numer Methods Eng 73(2):185–204

    MathSciNet  MATH  Google Scholar 

  18. Dvorak GJ (1992) Transformation field analysis of inelastic composite materials. Proc R Soc A 437:311–327

    MathSciNet  MATH  Google Scholar 

  19. Suquet P (1997) Effective properties for nonlinear composites. CISM Lect Notes 377:197–264

    MathSciNet  MATH  Google Scholar 

  20. Roussette S, Michel JC, Suquet P (2009) Non uniform transformation field analysis of elastic-viscoplastic composites. Compos Sci Technol 69:22–27

    Google Scholar 

  21. Michel J-C, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40(25):6937–6955

    MathSciNet  MATH  Google Scholar 

  22. Schmidt E (1907) Zur theorie der linearen und nichtlinearen integralgleichungen. i teil: Etwicklung willkurlicher funktion nach systemen vorgeschriebener. Math Ann 63:433–476

    MathSciNet  Google Scholar 

  23. Lumley JL (1967) The structure of inhomogeneous turbulent flows. In: Yaglom AM, Tataski VI (eds) Atmospheric turbulence and radio wave propagation. Nauka, Moscow, pp 166–178

    Google Scholar 

  24. Liang YC, Lee HP, Lim SP, Lin WZ, Lee KH (2002) Proper orthogonal decomposition and its applications - part i: theory. J Sound Vib 3:527–544

    MATH  Google Scholar 

  25. Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: a review of classification techniques. Emerg Artif Intell Appl Comput Eng 160:3–24 (2007)

    Google Scholar 

  26. Soize C, Farhat C (2017) A nonparametric probabilistic approach for quantifying uncertainties in low-dimensional and high-dimensional nonlinear models. Comput Methods Appl Mech Eng 109(6):837–888

    MathSciNet  Google Scholar 

  27. Peherstorfer B, Willcox K (2015) Dynamic data-driven reduced-order models. Comput Methods Appl Mech Eng 291:21–41

    MathSciNet  MATH  Google Scholar 

  28. Bessa MA, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667

    MathSciNet  Google Scholar 

  29. Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101

    MathSciNet  MATH  Google Scholar 

  30. Kirchdoerfer T, Ortiz M (2017) Data driven computing with noisy material data sets. Comput Methods Appl Mech Eng 326:622–641

    MathSciNet  Google Scholar 

  31. Ibañez R, Abisset-Chavanne E, Aguado JV, Gonzalez D, Cueto E, Chinesta F (2018) A manifold learning approach to data-driven computational elasticity and inelasticity. Arch Comput Methods Eng 25(1):47–57

    MathSciNet  MATH  Google Scholar 

  32. Nguyen LTK, Keip M-A (2018) A data-driven approach to nonlinear elasticity. Comput Struct 194:97–115

    Google Scholar 

  33. Versino D, Tonda A, Bronkhorst CA (2017) Data driven modeling of plastic deformation. Comput Methods Appl Mech Eng 318:981–1004

    Google Scholar 

  34. Yvonnet J, Monteiro E, He Q-C (2013) Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int J Multiscale Comput Eng 11(3):201–225

    Google Scholar 

  35. Clément A, Soize C, Yvonnet J (2012) Computational nonlinear stochastic homogenization using a non-concurrent multiscale approach for hyperelastic heterogenous microstructures analysis. Int J Numer Methods Eng 91(8):799–824

    Google Scholar 

  36. Clément A, Soize C, Yvonnet J (2013) Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Comput Methods Appl Mech Eng 254:61–82

    MathSciNet  MATH  Google Scholar 

  37. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    MATH  Google Scholar 

  38. Ponte-Castañeda P, Willis JR (1995) The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43(12):1919–1951

    MathSciNet  MATH  Google Scholar 

  39. Fritzen F, Kunc O (2017) Two-stage data-driven homogenization for nonlinear solids using a reduced order model. Eur J Mech A/Solids

    Google Scholar 

  40. Hitchkock FL (1927) The expression of a tensor or a polyadic as a sum of pruducts. J Math Phys 6:164–189

    Google Scholar 

  41. Harshman A (1970) Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis. UCLA working papers in phonetics, vol 16

    Google Scholar 

  42. Carol JD, Chang JJ (1970) Analysis of individual differences in multidimensional scaling via an n-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35:283–319

    MATH  Google Scholar 

  43. Kiers HAL (2000) Toward a standardized notation and terminology in multiway analysis. J Chemom 14

    Google Scholar 

  44. De Lathauwer L, De Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal Appl 21:1253–1278

    MathSciNet  MATH  Google Scholar 

  45. Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31:279–311

    MathSciNet  Google Scholar 

  46. Le BA, Yvonnet J, He Q-C (2015) Computational homogenization of nonlinear elastic materials using neural networks. Int J Numer Methods Eng 104(12):1061–1084

    MathSciNet  MATH  Google Scholar 

  47. Carter S, Culik SJ, Bowman JM (1997) Vibrational self-consistent field method for manymode systems: a new approach and application to the vibrations of CO adsorbed on Cu(100). J Chem Phys 107:10458

    Google Scholar 

  48. Carter S, Handy NC (2002) On the representation of potential energy surfaces of polyatomic molecules in normal coordinates. Chem Phys Lett 352:1–7

    Google Scholar 

  49. Sobol IM (1993) Sensitivity analysis for non-linear mathematical models. Math Model Comput 1:407–414

    MATH  Google Scholar 

  50. Rabitz H, Alis OF (1999) General foundations of high-dimensional model representations. J Math Chem 25:197–233

    MathSciNet  MATH  Google Scholar 

  51. Scarselli F, Tsoi AC (1998) Universal approximation using feedforward neural networks: a survey of some existing methods and some new results. Neural Netw 11(1):15–37

    Google Scholar 

  52. Manzhos S, Carrington T (2006) A random-sampling high dimensional model representation neural network for building potential energy surfaces. J Chem Phys 125:084109

    Google Scholar 

  53. Malshe M, Pukrittayakamee A, Hagan LM, Sukkapatnam S, Komanduri R (2009) Accurate prediction of higher-level electronic structure energies for large databases susing neural networks, Hartree-Fock energies, and small subsets of the database. J Chem Phys 131:124127

    Google Scholar 

  54. Sumpter BG, Getino C, Noid DW (1994) Theory and applications of neural computing in chemical science. Annu Rev Phys Chem 45:439

    Google Scholar 

  55. Yu DS (2013) Approximation by neural networks with sigmoidal functions. Acta Math Sin 29(10):2013–2026

    MathSciNet  MATH  Google Scholar 

  56. Manzhos S, Carrington T (2006) Using neural networks to represent potential surfaces as sums of products. J Chem Phys 125:194105

    Google Scholar 

  57. Manzhos S, Carrington T (2007) Using redundant coordinates to represent potential energy surfaces with lower-dimensional functions. J Chem Phys 127:014103

    Google Scholar 

  58. Manzhos S, Carrington T (2008) Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface. J Chem Phys 129:224104

    Google Scholar 

  59. Cybenko G (1989) Approximations by superpositions of sigmoidal functions. Math Control, Signals, Syst 2(4):303–314

    MathSciNet  MATH  Google Scholar 

  60. Manzhos S, Yamashita K (2010) A model for the dissociative adsorption of N\(_2\)O on Cu(100) using a continuous potential energy surface. Surf Sci 604:554–560

    Google Scholar 

  61. Manzhos S, Yamashita K, Carrington T (2009) Fitting sparse multidimensional data with low-dimensional terms. Comput Phys Commun 180:2002–2012 (2009)

    Google Scholar 

  62. Lu X, Giovanis D, Yvonnet J, Papadopoulos V, Detrez F, Bai J (2019) A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites. Comput Mech. Accepted, https://doi.org/10.1007/s00466-018-1643-0

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Yvonnet .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yvonnet, J. (2019). Nonlinear Computational Homogenization. In: Computational Homogenization of Heterogeneous Materials with Finite Elements. Solid Mechanics and Its Applications, vol 258. Springer, Cham. https://doi.org/10.1007/978-3-030-18383-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18383-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18382-0

  • Online ISBN: 978-3-030-18383-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics