Skip to main content

When Scales Cannot Be Separated: Direct Solving of Heterogeneous Structures with an Advanced Multiscale Method

  • Chapter
  • First Online:
Computational Homogenization of Heterogeneous Materials with Finite Elements

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 258))

Abstract

In previous chapters, the assumption of scale separation was adopted. When this assumption does not hold, e.g., when the size of heterogeneities are not much smaller than local dimensions of the structures, classical homogenization methods fail to describe the local fields and up to a certain precision even the global response. More precisely, lack of scale separation occurs when the wavelength associated with the strain and stress fields at the microscale is of the same order of magnitude as the wavelength of the prescribed loads or the characteristic dimensions of the structure [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yvonnet J, Bonnet G (2014) A consistent nonlocal scheme based on filters for the homogenization of heterogeneous linear materials with non-separated scales. Int J Solids Struct 51:196–209

    Article  Google Scholar 

  2. Feyel F (2003) A multilevel finite element method (FE\(^2\)) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28–30):3233–3244

    Article  Google Scholar 

  3. Forest S, Sab K (1998) Cosserat overall modelling of heterogeneous materials. Mech Res Commun 25(4):449–454

    Article  Google Scholar 

  4. Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    Article  Google Scholar 

  5. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193:5525–5550

    Article  Google Scholar 

  6. Yuan X, Tomita Y (2008) A micromechanical approach of nonlocal modeling for media with periodic microstructures. Mech Res Commun 35:126133

    Article  Google Scholar 

  7. Bouyge F, Jasiuk I, Ostoja-Starzewski M (2011) A micromechanically based couple-stres model of an elastic two-phase composite. Int J Solids Struct 38:1721–1735

    Article  Google Scholar 

  8. Tran T-H, Monchiet V, Bonnet G (2012) A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media. Int J Solids Struct 49:783–792

    Article  Google Scholar 

  9. Tognevi A, Guerich M, Yvonnet J (2016) A multi-scale modeling method for heterogeneous structures without scale separation using a filter-based homogenization scheme. Int J Numer Methods Eng 108(1–5):3–25

    Article  MathSciNet  Google Scholar 

  10. Hui T, Oskay C (2013) A nonlocal homogenization model for wave dispersion in dissipative composite materials. Int J Solids Struct 50:38–48

    Article  Google Scholar 

  11. Yvonnet J, Bonnet G (2014) Nonlocal/coarse graining homogenization of linear elastic media with non-separated scales using least-square polynomial filters. Int J Multiscale Comput Eng 12(5):375–395

    Article  Google Scholar 

  12. Forest S (2006) Milieux continus généralisés et matériaux hétérogènes. Presses des MINES

    Google Scholar 

  13. Farhat C, Roux F-X (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32(6):1205–1227

    Article  MathSciNet  Google Scholar 

  14. Le Tallec P, De Roeck Y-H, Vidrascu M (1991) Domain decomposition methods for large linearly elliptic three-dimensional problems. J Comput Appl Math 34(1):93–117

    Article  MathSciNet  Google Scholar 

  15. Gosselet P, Rixen D, Roux F-X, Spillane N (2015) Simultaneous FETI and block FETI: robust domain decomposition with multiple search directions. Int J Numer Methods Eng 104(10):905–927

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Yvonnet .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yvonnet, J. (2019). When Scales Cannot Be Separated: Direct Solving of Heterogeneous Structures with an Advanced Multiscale Method. In: Computational Homogenization of Heterogeneous Materials with Finite Elements. Solid Mechanics and Its Applications, vol 258. Springer, Cham. https://doi.org/10.1007/978-3-030-18383-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18383-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18382-0

  • Online ISBN: 978-3-030-18383-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics