Skip to main content

Quantum Hamiltonian Mechanics on Symplectic Manifolds

  • Chapter
  • First Online:
Quantum versus Classical Mechanics and Integrability Problems
  • 613 Accesses

Abstract

In the previous chapter we presented the general theory of quantum deformations of classical Poisson algebras. In the following chapter we develop a deformation procedure applied to classical statistical Hamiltonian mechanics (described in Sect. 3.3) in order to construct its quantum analogue on the phase space. First, we define quantum states as appropriate deformations of classical states and their time development through the respective deformation of the classical Liouville equation. Then we introduce quantum Hamiltonian equations of motion being a deformation of classical Hamiltonian equations and time development of quantum observables. With particular care we present the theory of quantum flow and quantum trajectories on a phase space together with a wide range of examples which illustrate the presented formalism. Such constructed quantum theories (each related with an appropriate quantum algebra) reduce to a common classical counterpart as deformation parameter \(\hslash \) tends to zero: \(\hslash \rightarrow 0.\)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartlett, M.S., Moyal, J.E., The exact transition probabilities of quantum-mechanical oscillators calculated by the phase-space method. Math. Proc. Camb. Philos. Soc. 45, 545 (1949)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. I. deformations of symplectic structures. Ann. Phys. 111, 61 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  3. Błaszak, M., Domański, Z.: Quantum trajectories. Phys. Lett. A 376, 3593 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bohm, D.: A suggested interpretation of the quantum theory in terms of” hidden” variables. I. Phys. Rev. 85, 166 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bohm, D.: A suggested interpretation of the quantum theory in terms of” hidden” variables. II. Phys. Rev. 85, 180 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  6. Curtright, T., Fairlie, D.B., Zachos, C.: Features of time-independent Wigner functions. Phys. Rev. D 58, 25002 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  7. Curtright, T., Uematsu, T., Zachos, C.: Generating all Wigner functions. J. Math. Phys. 42, 2396 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  8. Dias, N.C., Prata, J.N.: Formal solution of stargenvalue equations. Ann. Phys. 311, 120 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  9. Dias, N.C., Prata, J.N.: Features of Moyal trajectories. J. Math. Phys. 48, 012109 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  10. Dirac, P.A.M.: The principles of Quantum Mechanics, 4th edn. Oxford University, New York (1958)

    MATH  Google Scholar 

  11. Domański. Z., Błaszak, M.: Coherence and squeezing along quantum trajectories. Rep. Math. Phys. 80, 373 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  12. Fairlie, D.B.: The formulation of quantum mechanics in terms of phase space functions. Math. Proc. Camb. Philos. Soc. 60, 581 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  13. Glauber, R.J.: Coherent and Incoherent States of the Radiation Field. Phys. Rev. 131, 2766 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  14. Glauber, R.J. In: Quantum Optics and Electronics (eds), by DeWitt, C., Blandin, A., Cohen-Tannoudji, C., p. 63. Gordon and Breach, New York (1965)

    Google Scholar 

  15. Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12, 405 (1946)

    Article  MathSciNet  ADS  Google Scholar 

  16. Han, D., Kim, Y.S., Noz, M.E.: Linear canonical transformations of coherent and squeezed states in the Wigner phase space. Phys. Rev A 37, 807 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  17. Holland, P.R.: The Quantum Theory of Motion. Cambridge University, Cambridge (1993)

    Book  Google Scholar 

  18. Krivoruchenko, M.I., Faessler, J.: Weyl’s symbols of Heisenberg operators of canonical coordinates and momenta as quantum characteristics. J. Math. Phys. 48, 052107 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  19. Littlejohn, R.G.: The semiclassical evolution of wave packets. Phys. Rep. 138, 193 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  20. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  21. Walls, D.: Squeezed states of light. Nature 306, 141 (1983)

    Article  ADS  Google Scholar 

  22. Wyatt, R.E.: Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics. Springer, Berlin (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Błaszak, M. (2019). Quantum Hamiltonian Mechanics on Symplectic Manifolds. In: Quantum versus Classical Mechanics and Integrability Problems. Springer, Cham. https://doi.org/10.1007/978-3-030-18379-0_7

Download citation

Publish with us

Policies and ethics