Advertisement

Understanding the Regulatory Features of Co-regulated Genes Using Distant Regulatory Elements (DiRE) Genomic Tool in Health and Disease

  • Arif MohammedEmail author
  • Othman A. Alghamdi
  • Mohd Rehan
  • Babajan Banaganapalli
  • Ramu Elango
  • Noor Ahmad ShaikEmail author
Chapter
  • 732 Downloads

Abstract

Regulation of gene expression is a complex process which require several players working together in different time and space in a cell or tissue level. In eukaryotes, gene expression regulation is maintained by a complicated dynamic interplay between proximal promoters and distal regulatory elements (REs) such as repressors and enhancers and transcription factors (TFs). TFs are an important regulator of various life processes and diseases. Ample evidence now suggests that the regulatory networks and the interactions between target binding sites and various TFs play pivotal role in several diseases including cancers. TFs also play a key role in differential gene expression which has proven important in understanding the biological differences between healthy and diseased states. In this book chapter, we discuss about a genomic tool named DiRE which can predict distant REs based on transcription factor binding sites (TFBSs). It possesses a unique capacity to detect REs beyond regions of proximal promoter. DiRE can predict common REs in the coregulated genes. Here we describe step by step method to use this tool. At last, we also discuss the advantages and possible limitation of this tool use for genomic applications.

Keywords

Gene expression Transcription Transcription factors Genome Database Enhancer Disease 

Abbreviations

DEG

Differentially Expressed Gene

DiRE

Distant Regulatory Elements

ECR

Evolutionary Conserved Region

EI

Enhancer Identification

GWAS

Genome-Wide Association Studies

RE

Regulatory Elements

TF

Transcription Factor

TFBS

Transcription Factor Binding Site

TSS

Transcriptional Start Site

UTR

Untranslated Regions

References

  1. Aid-Pavlidis T, Pavlidis P, Timmusk T (2009) Meta-coexpression conservation analysis of microarray data: a “subset” approach provides insight into brain-derived neurotrophic factor regulation. BMC Genomics 10:420PubMedPubMedCentralCrossRefGoogle Scholar
  2. Altermann E, Klaenhammer TR (2005) PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genomics 6:60PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baty F, Rüdiger J, Miglino N, Kern L, Borger P, Brutsche M (2013) Exploring the transcription factor activity in high-throughput gene expression data using RLQ analysis. BMC Bioinformatics 14:178PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I et al (2008) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 36(Database issue):D102–D106PubMedPubMedCentralGoogle Scholar
  6. Campbell SJ, Gaulton A, Marshall J, Bichko D, Martin S, Brouwer C et al (2010) Visualizing the drug target landscape. Drug Discov Today 15(1–2):3–15PubMedCrossRefPubMedCentralGoogle Scholar
  7. Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134(1):25–36PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M (2009) Mapping complex disease traits with global gene expression. Nat Rev Genet 10(3):184–194PubMedPubMedCentralCrossRefGoogle Scholar
  9. De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK et al (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8(5):e1000384PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dimas AS, Deutsch S, Stranger BE, Montgomery SB, Borel C, Attar-Cohen H et al (2009) Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325(5945):1246–1250PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dottorini T, Palladino P, Senin N, Persampieri T, Spaccapelo R, Crisanti A (2013) CluGene: a bioinformatics framework for the identification of co-localized, co-expressed and co-regulated genes aimed at the investigation of transcriptional regulatory networks from high-throughput expression data. PLoS One 8(6):e66196PubMedPubMedCentralCrossRefGoogle Scholar
  12. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25):14863–14868PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gotea V, Ovcharenko I (2008) DiRE: identifying distant regulatory elements of co-expressed genes. Nucleic Acids Res 36(Web Server issue):W133–W139PubMedPubMedCentralCrossRefGoogle Scholar
  14. Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N et al (2011) 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature 470(7333):264–268PubMedPubMedCentralCrossRefGoogle Scholar
  15. He Y, Liu J, Zhao Z, Zhao H (2017) Bioinformatics analysis of gene expression profiles of esophageal squamous cell carcinoma. Dis Esophagus 30(5):1–8PubMedCrossRefPubMedCentralGoogle Scholar
  16. Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9(11):1106–1115PubMedPubMedCentralCrossRefGoogle Scholar
  17. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kleinjan DA, van Heyningen V (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76(1):8–32PubMedCrossRefGoogle Scholar
  19. Koch F, Fenouil R, Gut M, Cauchy P, Albert TK, Zacarias-Cabeza J et al (2011) Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat Struct Mol Biol 18(8):956–963PubMedCrossRefGoogle Scholar
  20. Lam MT, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y et al (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498(7455):511–515PubMedPubMedCentralCrossRefGoogle Scholar
  21. Lenhard B, Sandelin A, Carninci P (2012) Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat Rev Genet 13(4):233–245PubMedCrossRefPubMedCentralGoogle Scholar
  22. Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA et al (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12(14):1725–1735PubMedCrossRefPubMedCentralGoogle Scholar
  23. Loging W, Harland L, Williams-Jones B (2007) High-throughput electronic biology: mining information for drug discovery. Nat Rev Drug Discov 6(3):220–230PubMedCrossRefPubMedCentralGoogle Scholar
  24. Loots GG, Locksley RM, Blankespoor CM, Wang ZE, Miller W, Rubin EM et al (2000) Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288(5463):136–140PubMedCrossRefPubMedCentralGoogle Scholar
  25. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV et al (2010) From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466(7307):714–719PubMedPubMedCentralCrossRefGoogle Scholar
  26. Nobrega MA, Ovcharenko I, Afzal V, Rubin EM (2003) Scanning human gene deserts for long-range enhancers. Science 302(5644):413PubMedCrossRefPubMedCentralGoogle Scholar
  27. Ovcharenko I, Nobrega MA, Loots GG, Stubbs L (2004) ECR browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic Acids Res 32(Web Server issue):W280–W286PubMedPubMedCentralCrossRefGoogle Scholar
  28. Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M et al (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444(7118):499–502PubMedPubMedCentralCrossRefGoogle Scholar
  29. Pennacchio LA, Loots GG, Nobrega MA, Ovcharenko I (2007) Predicting tissue-specific enhancers in the human genome. Genome Res 17(2):201–211PubMedPubMedCentralCrossRefGoogle Scholar
  30. Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H et al (2009) The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 41(8):882–884PubMedPubMedCentralCrossRefGoogle Scholar
  31. Rodriguez-Esteban R, Jiang X (2017) Differential gene expression in disease: a comparison between high-throughput studies and the literature. BMC Med Genet 10(1):59Google Scholar
  32. Roy AL, Singer DS (2015) Core promoters in transcription: old problem, new insights. Trends Biochem Sci 40(3):165–171PubMedPubMedCentralCrossRefGoogle Scholar
  33. Sakabe NJ, Savic D, Nobrega MA (2012) Transcriptional enhancers in development and disease. Genome Biol 13(1):238PubMedPubMedCentralCrossRefGoogle Scholar
  34. Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12(10):683–691PubMedPubMedCentralCrossRefGoogle Scholar
  35. Schor IE, Degner JF, Harnett D, Cannavò E, Casale FP, Shim H et al (2017) Promoter shape varies across populations and affects promoter evolution and expression noise. Nat Genet 49(4):550–558PubMedCrossRefPubMedCentralGoogle Scholar
  36. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB et al (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273–3297PubMedPubMedCentralCrossRefGoogle Scholar
  37. Stranger BE, Stahl EA, Raj T (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187(2):367–383PubMedPubMedCentralCrossRefGoogle Scholar
  38. Tuan D, Kong S, Hu K (1992) Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc Natl Acad Sci U S A 89(23):11219–11223CrossRefGoogle Scholar
  39. Vo Ngoc L, Wang YL, Kassavetis GA, Kadonaga JT (2017) The punctilious RNA polymerase II core promoter. Genes Dev 31(13):1289–1301PubMedPubMedCentralCrossRefGoogle Scholar
  40. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562CrossRefGoogle Scholar
  41. Wingender E, Dietze P, Karas H, Knüppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24(1):238–241PubMedPubMedCentralCrossRefGoogle Scholar
  42. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V et al (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28(1):316–319PubMedPubMedCentralCrossRefGoogle Scholar
  43. Yáñez-Cuna JO, Kvon EZ, Stark A (2013) Deciphering the transcriptional cis-regulatory code. Trends Genet 29(1):11–22PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arif Mohammed
    • 1
    Email author
  • Othman A. Alghamdi
    • 1
  • Mohd Rehan
    • 2
    • 3
  • Babajan Banaganapalli
    • 4
  • Ramu Elango
    • 4
  • Noor Ahmad Shaik
    • 4
    Email author
  1. 1.Biology Department, Faculty of SciencesUniversity of JeddahJeddahSaudi Arabia
  2. 2.King Fahd Medical Research Center, King Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Princess Al-Jawhara Center of Excellence in Research of Hereditary DisordersDepartment of Genetic Medicine, Faculty of Medicine, King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations