Design and Development of Small Molecules from Somatic, Stem Cell Reprogramming, and Therapy

  • Praveen Kumar Guttula
  • Mukesh Kumar GuptaEmail author


Nuclear reprogramming changes the cell fate and plays a vital role in obtaining pluripotent stem cells. It is difficult to explain clear molecular mechanism of nuclear reprogramming. Direct reprogramming of somatic cell types into desired cell types can be achieved by using specific genes and small molecules. Computational methods and molecular modeling may provide the insight to explain the landscape of the nuclear reprogramming and stem cell pluripotency. The structural and functional information of protein is required for annotation. In the absence of experimental structures, computational methods like homology modeling will be employed to decipher the protein structure and active sites. By fold identification and binding site-based ligand association, functional annotation will be carried out. Molecular docking and pharmacophore modeling are used to optimize the lead compounds or small molecules for direct conversion of somatic cell types and stem cells into specific cell types, which also help in identification of the better targets that aid in drug design process in cell-based therapy and tissue engineering.


Nuclear reprogramming Stem cell pluripotency Molecular docking Cell-based therapy Tissue engineering 


Germ line stem cells


Glial cell line-derived neurotrophic factor


Induced pluripotent stem cells

(iPS) cells

Multipotent germ line stem cells


Spermatogonial stem cells




The authors are thankful to Bioinformatics Infrastructure facility at National Institute of Technology, Rourkela funded by DBT for providing the facilities to carry out the research.


  1. Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins: Structure, Function, and Bioinformatics 69(1):139–159CrossRefGoogle Scholar
  2. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201CrossRefGoogle Scholar
  3. Beck KD, Valverde J, Alexi T, Poulsen K, Moffat B, Vandlen RA, Rosenthal A, Hefti F (1995) Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373(6512):339CrossRefGoogle Scholar
  4. Bensadoun JC, Déglon N, Tseng JL, Ridet JL, Zurn AD, Aebischer P (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp Neurol 164(1):15–24CrossRefGoogle Scholar
  5. Bowenkamp KE, Hoffman AF, Gerhardt GA, Henry MA, Biddle PT, Hoffer BJ, Granholm AC (1995) Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J Comp Neurol 355(4):479–489CrossRefGoogle Scholar
  6. Cochrane GR, Galperin MY (2009) The 2010 nucleic acids research database issue and online database collection: a community of data resources. Nucleic Acids Res 38(suppl_1):D1–D4CrossRefGoogle Scholar
  7. de Rooij DG (2006) Rapid expansion of the spermatogonial stem cell tool box. Proc Natl Acad Sci 103(21):7939–7940CrossRefGoogle Scholar
  8. Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. In: InInternational workshop on algorithms in bioinformatics. Springer, Berlin, Heidelberg, pp 185–200CrossRefGoogle Scholar
  9. Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380(6571):252CrossRefGoogle Scholar
  10. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Humana press, pp 571–607. New York, USACrossRefGoogle Scholar
  11. Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens AA, Hammer RE, Garbers DL (2005) Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci U S A 102(48):17430–17435CrossRefGoogle Scholar
  12. Hebert MA, Van Horne CG, Hoffer BJ, Gerhardt GA (1996) Functional effects of GDNF in normal rat striatum: presynaptic studies using in vivo electrochemistry and microdialysis. J Pharmacol Exp Ther 279(3):1181–1190PubMedGoogle Scholar
  13. Hess RA, Cooke PS, Hofmann MC, Murphy KM (2006) Mechanistic insights into the regulation of the spermatogonial stem cell niche. Cell Cycle 5(11):1164–1170CrossRefGoogle Scholar
  14. Hoffer BJ, Hoffman A, Bowenkamp K, Huettl P, Hudson J, Martin D, Lin LF, Gerhardt GA (1994) Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci Lett 182(1):107–111CrossRefGoogle Scholar
  15. Honaramooz A, Megee S, Zeng W, Destrempes MM, Overton SA, Luo J, Galantino-Homer H, Modelski M, Chen F, Blash S, Melican DT (2008) Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB J 22(2):374–382CrossRefGoogle Scholar
  16. Hudson J, Granholm AC, Gerhardt GA, Henry MA, Hoffman A, Biddle P, Leela NS, Mackerlova L, Lile JD, Collins F, Hoffer BJ (1995) Glial cell line-derived neurotrophic factor augments midbrain dopaminergic circuits in vivo. Brain Res Bull 36(5):425–432CrossRefGoogle Scholar
  17. Jung YH, Gupta MK, Oh SH, Uhm SJ, Lee HT (2010) Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells. Exp Cell Res 316(5):747–761CrossRefGoogle Scholar
  18. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119(7):1001–1012CrossRefGoogle Scholar
  19. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J (2015) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213CrossRefGoogle Scholar
  20. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290(5492):767–773CrossRefGoogle Scholar
  21. Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101(47):16489–16494CrossRefGoogle Scholar
  22. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778CrossRefGoogle Scholar
  23. Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33(suppl_2):W89–W93CrossRefGoogle Scholar
  24. Li W, Ding S (2010) Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci 31(1):36–45CrossRefGoogle Scholar
  25. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130–1132CrossRefGoogle Scholar
  26. Lovell SC, Davis IW, Arendall WB, De Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics. 50(3):437–450CrossRefGoogle Scholar
  27. Mashiach E, Schneidman-Duhovny D, Andrusier N, Nussinov R, Wolfson HJ (2008) FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36(suppl_2):W229–W232CrossRefGoogle Scholar
  28. Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287(5457):1489–1493CrossRefGoogle Scholar
  29. Sauer H, Rosenblad C, Björklund A (1995) Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc Natl Acad Sci 92(19):8935–8939CrossRefGoogle Scholar
  30. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(suppl_2):W363–W367CrossRefGoogle Scholar
  31. Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278(5346):2130–2133CrossRefGoogle Scholar
  32. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRefGoogle Scholar
  33. Tokugawa K, Yamamoto K, Nishiguchi M, Sekine T, Sakai M, Ueki T, Chaki S, Okuyama S (2003) XIB4035, a novel nonpeptidyl small molecule agonist for GFRα-1. Neurochem Int 42(1):81–86CrossRefGoogle Scholar
  34. VLife MD (2008) 3.5 Molecular design suite. VLife Sciences Technologies, PuneGoogle Scholar
  35. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel 8(2):127–134CrossRefGoogle Scholar
  36. Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465(7299):704CrossRefGoogle Scholar
  37. Zechner U, Nolte J, Wolf M, Shirneshan K, Hajj NE, Weise D, Kaltwasser B, Zovoilis A, Haaf T, Engel W (2009) Comparative methylation profiles and telomerase biology of mouse multipotent adult germline stem cells and embryonic stem cells. Mol Hum Reprod 15(6):345–353CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Gene Manipulation Laboratory, Department of Biotechnology and Medical EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations