Skip to main content

Fungi in Antarctica: Diversity, Ecology, Effects of Climate Change, and Bioprospection for Bioactive Compounds

  • Chapter
  • First Online:
Fungi of Antarctica

Abstract

Fungi occur in virtually all types of living and non-living substrates of Antarctica in different environments. However, knowledge of the diversity, ecological roles, and biotechnological applications of Antarctic fungi remain limited. The major resident Antarctic fungal phylum is Ascomycota and its anamorphs, followed by Basidiomycota and a few traditional Zygomycota. Other known and unknown fungal taxa may be present in not yet studied habitats, and the fungal diversity of many Antarctic environments remains unexplored. As eukaryotic organisms, Antarctic fungi appear to be highly adapted to survive and colonise the extreme environments of Peninsula and continental Antarctica. Accordingly, they represent promising and important models to study the environmental limits and survival mechanisms of extremophiles. Additionally, as some fungi living in Antarctica are both adapted to these extreme conditions and geographically isolated, they may possess novel or unusual metabolic pathways for the production of compounds with potential biotechnological applications in medicine, industry, and agriculture. Finally, global climate change and the potential contamination of Antarctic ecosystems with non-native species represent two of the greatest dangers for the conservation and future of this region. Studies of Antarctic fungi adaptations to climate change and assessments of fungal diversity and distribution across Antarctica represent an important model system for monitoring the effects of global climate changes on other life forms. However, Antarctic microorganisms, including fungi, remain largely uncharacterised, including their physiological and biochemical behaviours when in contact with other life forms. Potential pathogenic effects on plants and animals, including mammals, are unknown for most Antarctic fungi, although a few studies have suggested that some of these species could have such effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves IMS, Gonçalves VN, Oliveira FS, Schaefer CEGR, Rosa CA, Rosa LH (2019) Diversity, distribution, and pathogenic potential of cultivable fungi present in rocks of South Shetlands Archipelago, Maritime Antarctica. Fungal Biol 23:327–336

    Google Scholar 

  • Ananda K, Sridhar KR (2002) Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Can J Microbiol 48:871–878

    Article  CAS  Google Scholar 

  • Baublis JA, Wharton RA, Volz PA (1991) Diversity of microfungi in an Antarctic Dry Valley. J Basic Microbiol 31:3–12

    Article  CAS  Google Scholar 

  • Bridge PD, Spooner BM (2012) Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem? Fungal Ecol 5:381–394

    Article  Google Scholar 

  • Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E, de Hoog S, Genilloud O, Marinelli F (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2:43–50

    Article  Google Scholar 

  • Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DK, Smith RC (2006) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos Trans R Soc Lond B Biol Sci 362:149–166

    Article  Google Scholar 

  • de Hoog GS, Göttlich E, Platas G, Genilloud O, Leotta G, Van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76

    Google Scholar 

  • de Menezes GCA, Godinho VM, Porto BA, Gonçalves VN, Rosa LH (2017) Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles 21:259–269

    Article  Google Scholar 

  • Del Frante GD, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7

    Article  Google Scholar 

  • Donachie SP, Zdanowski MK (1998) Potential digestive function of bacteria in krill, Euphausia superba stomach. Aquat Microb Ecol 14:129–121

    Article  Google Scholar 

  • Fell JW, Hunter IL (1968) Isolation of heterothallic yeast strains of Metschnikowia Kamienski and their mating reactions with Chlamydozyma Wickerham spp. Antonie Van Leeuwenhoek 34:365–376

    Article  CAS  Google Scholar 

  • Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with <5% soil moisture. Soil Biol Biochem 38:3107–3119

    Article  CAS  Google Scholar 

  • Fletcher LD, Kerry EJ, Weste GM (1985) Microfungi of Mac.Robertson and Enderby Lands, Antarctica. Polar Biol 4:81–88

    Article  Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TMA, Zani CL, Junior AS, Romanha AJ, Carvalho AGO, Gil LHVG, Rosa CA, Minnis AM, Rosa LH (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 67:775–787

    Article  Google Scholar 

  • Gamundi IJ, Spinedi HA (1988) New species and interesting collections from Danco Coast, Antarctic Pensinsula. Mycotaxon 33:467–498

    Google Scholar 

  • Gazis R, Rehner S, Chaverri P (2011) Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol Ecol 20:3001–3013

    Article  Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya N, Pupo D, Alves TMA, Junior PAS, Romanha AJ, Zani CL, Cantrell C, Rosa CA, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J7:1434–1451

    Article  Google Scholar 

  • Godinho VM, Gonçalves VN, Santiago IF, Figueredo HM, Vitoreli GA, Schaefer CEGR, Barbosa EC, Oliveira JG, Alves TMA, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Kroon EG, Cantrell CL, Wedge DE, Duke SO, Ali A, Rosa CA, Rosa LH (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596

    Article  Google Scholar 

  • Gomes ECQ, Godinho VM, Silva DAS, de Paula MTR, Vitoreli GA, Zani CL, Alves TMA, Junior PAS, Murta SMF, Barbosa EC, Oliveira JG, Oliveira FS, Carvalho CR, Ferreira MC, Rosa CA, Rosa LH (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393

    Article  CAS  Google Scholar 

  • Gonçalves VN, Carvalho CR, Johann S, Mendes G, Alves TMA, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Cantrell CL, Rosa CA, Rosa LH (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152

    Article  Google Scholar 

  • Gonçalves VN, Oliveira FS, Carvalho C, Schaefer CEG, Rosa CA, Rosa LH (2017) Antarctic rocks from continental Antarctica as source of potential human opportunistic fungi. Extremophiles 21:851–860

    Article  Google Scholar 

  • Gonçalves VN, Vaz ABM, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471

    Article  Google Scholar 

  • Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in high arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77:3234–3243

    Article  CAS  Google Scholar 

  • Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG, Samson RA (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29:78–100

    Article  CAS  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. Wallingford, UK, CAB International

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T, Roberts V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekout T (eds) The yeasts: a taxonomic study. Elsevier Science, Amsterdam, pp 87–110

    Chapter  Google Scholar 

  • Lachance MA, Bowles JM, Starmer WT, Barker JS (1999) Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. Can J Microbiol 45:172–177

    Article  CAS  Google Scholar 

  • Li Y, Sun B, Liu S, Jiang L, Liu X, Zhang H, Che Y (2008) Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. J Nat Prod 71:1643–1646

    Article  CAS  Google Scholar 

  • Lin A, Wu G, Gu Q, Zhu T, Li D (2014) New eremophilane-type sesquiterpenes from an Antarctic deep-sea derived fungus Penicillium sp. PR19 N-1. Arch Pharm Res 37:839–844

    Article  CAS  Google Scholar 

  • Liu CC, Zhang ZZ, Feng YY, Gu QQ, Li DH, Zhu TJ (2019) Secondary metabolites from Antarctic marine-derived fungus Penicillium crustosum HDN153086. Nat Prod Res 33:414–419

    Article  CAS  Google Scholar 

  • Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648

    Article  Google Scholar 

  • Lorch JM, Lindner DL, Gargas A, Muller LK, Minnis AM, Blehert DS (2013) A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105:237–252

    Article  CAS  Google Scholar 

  • Lorch JM, Meteyer CU, Behr JM, Boyles JG, Cryan PM, Hicks AC, Ballmann AE, Coleman JTH, Redell DN, Reeder DM, Blehert DS (2011) Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480:376–378

    Article  CAS  Google Scholar 

  • Mahuku GS, Hsiang T, Yang L (1998) Genetic diversity of Microdochium nivale isolates from turfgrass. Mycol Res 102:559–567

    Article  CAS  Google Scholar 

  • Melo IS, Santos SN, Rosa LH, Parma MM, Silva LJ, Queiroz SCN, Pellizari VH (2014) Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles 18:15–23

    Article  CAS  Google Scholar 

  • Mercantini R, Marsella R, Cervellati MC (1989) Keratinophilic fungi isolated from Antarctic soil. Mycopathologia 106:47–52

    Article  CAS  Google Scholar 

  • Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol 117:638–649

    Article  Google Scholar 

  • Möller C, Dreyfuss MM (1996) Microfungi from Antarctic lichens, mosses and vascular plants. Mycologia 88:922–933

    Article  Google Scholar 

  • Onofri S, Tosi S (1989) II contributo della micologia alla IV spedizione italiana in Antartide. Micol Veget Mediterr 4:57–62

    Google Scholar 

  • Parish CA, Cruz M, Smith SK, Zink D, Baxter J et al (2009) Antisense-guided isolation and structure elucidation of pannomycin, a substituted cis-decalin from Geomyces pannorum. J Nat Prod 72:59–62

    Article  CAS  Google Scholar 

  • Prasada R, Prabhu AS (1962) Leaf blight of wheat caused by a new species of Alternaria. Indian Phytopathol 15:292–293

    Google Scholar 

  • Pugh GJF, Allosopp D (1982) Microfungi on Signy Island, South Orkney Islands. Br Antarct Surv Bull 57:55–67

    Google Scholar 

  • Rao S, Chan Y, Lacap DC, Hyde KD, Pointing SB, Farrell RL (2012) Low-diversity fungal assemblage in an Antarctic Dry Valleys soil. Polar Biol 35:567–574

    Article  Google Scholar 

  • Revich BA, Podolnaya MA (2011) Thawing of permafrost may disturb historic cattle burial grounds in East Siberia. Glob Health Action 4(1):8482

    Article  Google Scholar 

  • Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Article  Google Scholar 

  • Rosa LH, Vieira MLA, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189

    CAS  PubMed  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Santiago IF, Alves TMA, Rabello A, Sales-Júnior PA, Romanha AJ, Zani CL et al (2012) Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 16:95–103

    Article  Google Scholar 

  • Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097

    Article  Google Scholar 

  • Sousa JRP, Gonçalves VN, de Holanda RA, Santos DA, Bueloni CFLG, Costa AO, Petry MV, Rosa CA, Rosa LH (2017) Pathogenic potential of environmental resident fungi from ornithogenic soils of Antarctica. Fungal Biol 12:991–1000

    Article  Google Scholar 

  • Stchigel AM, Cano J, MacCormack CW (2001) Antarctomyces psychrotrophicus gen. et sp. nov., a new ascomycete from Antarctica. Mycol Res 105:377–382

    Article  CAS  Google Scholar 

  • Stielow JB, Lévesque CA, Seifert KA et al (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35:242–263

    Article  CAS  Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Köljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Div 90:135–159

    Article  Google Scholar 

  • Thomma BPHJ (2003) Alternaria spp.: from general saprophyte to specie parasite. Mol Plant Pathol 4:225–236

    Article  CAS  Google Scholar 

  • Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Vaz ABM, Rosa LH, Vieira MLA, Garcia V, Brandão LR, Teixeira LCRS, MolinéII M, LibkindII D, BroockII MV, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Br J Microbiol 42:937–947

    Article  CAS  Google Scholar 

  • Vieira G, Puric J, Morão LG, dos Santos JA, Inforsato FJ, Sette LD, Ferreira H, Sass DC (2018) Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. citri. Lett Appl Microbiol 67:64–71

    Article  CAS  Google Scholar 

  • Wang J, Wei X, Qin X, Tian X, Liao L, Li K, Zhou X, Yang X, Wang F, Zhang T, Tu Z, Chen B, Liu Y (2016) Antiviral merosesquiterpenoids produced by the Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J Nat Prod 79:59–65

    Article  CAS  Google Scholar 

  • White TJ, Bruns TD, Lee SB (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277:394–403

    Article  CAS  Google Scholar 

  • Zhong-shan C, Wen-cheng T, Zhi-jian S, Shi-feng S, Qi-jin C, Fang-hai W, Yong-cheng L, Zhi-gang S, Vrijmoed L (2008) Identification of mangrove endophytic fungus 1403 (Fusarium proliferatum) based on morphological and molecular evidence. J Forest Res 19:219–224

    Article  Google Scholar 

  • Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61

    Article  Google Scholar 

  • Zukal J, Bandouchova H, Brichta J, Cmokova A, Jaron KS, Kolarik M, Kovacova V, Kubátová A, Nováková A, Orlov O, Pikula J, Presetnik P, Šuba J, Zahradníková AJ, Martínková N (2016) Whitenose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci Rep 6:19829

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosa, L.H. et al. (2019). Fungi in Antarctica: Diversity, Ecology, Effects of Climate Change, and Bioprospection for Bioactive Compounds. In: Rosa, L. (eds) Fungi of Antarctica. Springer, Cham. https://doi.org/10.1007/978-3-030-18367-7_1

Download citation

Publish with us

Policies and ethics