Skip to main content

Part of the book series: Springer Water ((SPWA))

Abstract

In recent years, the Czech Republic has experienced extreme weather fluctuations leading to unexpected floods and long periods of drought. The current situation is a result of the long-term use of our landscape which is no longer able to retain and accumulate water, mainly due to technical alterations of watercourses, changes in land use and deforestation. Adaptation to climate change and prevention of further damage from extreme floods and droughts require an alternative approach to land use and land management. In the landscape, water performs multiple functions which are closely interconnected and dependent upon the functioning of the whole landscape. Thus, to properly manage water in the landscape, we need to embrace a holistic view—meaning protection and restoration of the whole landscape, not only fragments. Small water circulation should be promoted in the landscape; however, restoring the water cycle in the landscape is unattainable without revising agricultural practices and restoring alluvial processes, river ecosystems, and wetlands. There are two main strategic goals for restoration of the complete water cycle: first the restoration of drainage patterns having natural hydromorphology, and second the improvement of water retention capacity across landscapes of Czech Republic—water needs to infiltrate the soils at the same place where it falls as rain. This approach is based on the so-called new water paradigm and requires integration of all processes affecting water in the watershed, not only in the channels or reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pithart D, Dostál T, Langhammer J, Janský B et al (2012) Significance of water retention in river floodplains [in Czech: Význam retence vody v říčních nivách]. Daphne ČR—Institut aplikované ekologie, 141 pp

    Google Scholar 

  2. Roub R, Hejduk T, Novák P (2013) Optimalization of flood protection by semi-natural means and retention in the catchment area: a case study of Litavka River (Czech Republic). Morav Geogr Rep 21(1):41–66

    Google Scholar 

  3. Soukalová E, Muzikář R (2015) Hydrological groundwater drought [in Czech with English summary]. VTEI 4–5:34–41

    Google Scholar 

  4. Zahrádková S, Hájek O, Treml P, Pařil P, Straka M, Němejcová D, Polášek M, Ondráček P (2015) Risk assessment of drying up of small stream in the Czech Republic [in Czech]. VTEI 6:4–16

    Google Scholar 

  5. Hejzlar J (2017) Water in landscape [in Czech], pp 74–76. In: Petřík, P, Macková, J, Fanta J (eds) Landscape and people. Academia, Praha, 170 pp

    Google Scholar 

  6. Pithart D (2017) Transformations of the farming in river floodplains [in Czech], pp 77–80. In: Petřík P, Macková J, Fanta J (eds) Landscape and people. Academia, Praha, 170 pp

    Google Scholar 

  7. Mauchamp A, Chauvelon P, Grillas P (2002) Restoration of floodplain wetlands: opening polders along a coastal river in Mediterranean France, Vistre marshes. Ecol Eng 18:619–632

    Article  Google Scholar 

  8. Antrop M (2004) Landscape change and the urbanization process in Europe. Landsc Urban Plan 67(1–4):9–26

    Article  Google Scholar 

  9. Fanta J (2014) Floods and droughts: landscape as the basis for a solution [in Czech with English abstract], pp 13–15. In: Fanta J, Petřík P (eds) Floods and droughts: landscape as the basis for a solution. Proceedings from seminars of the Commission for environment of the Czech Academy of Sciences held in October 8th 2013 and June 5th 2014, Institute of Botany the Czech Academy of the Science

    Google Scholar 

  10. Petřík P, Macková J, Fanta J (eds) (2017) Landscape and people. Academia, Praha, p 170

    Google Scholar 

  11. Petřík P, Salzmann K, Hejzlar J, Pithart D, Fanta J (2017b) Water in the landscape and restoration [in Czech: Voda v krajině a revitalizace], pp 125–133. In: Landscape engineering. Conference proceedings, October 10th 2018, Ministry of Agriculture, Prague

    Google Scholar 

  12. Everard M, Powell A, Sweeting RA (2001) What Rio+ 10 must do for the freshwater environment. FBA News 15:1–4

    Google Scholar 

  13. Davie T (2008) Fundamentals of hydrology, 2nd ed. Taylor Francis e-Library, New York, NY, 200 pp

    Book  Google Scholar 

  14. Stephenson D. (2003) Water resource management. Swets & Zeitlinger B.V, Lisse, The Netherlands, 314 pp

    Google Scholar 

  15. Vörösmarty CJ, Sahagian D (2000) Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50(9):753–765

    Article  Google Scholar 

  16. Gornitz V, Rosenzweig C, Hillel D (1997) Effects of anthropogenic intervention in the land hydrologic cycle on global sea level rise. Global Planet Change 14:147–161

    Article  Google Scholar 

  17. Rosenberg DM, McCully P, Pringle CM (2000) Global-scale environmental effects of hydrological alterations: Introduction. BioScience 50(9):746–751

    Article  Google Scholar 

  18. Haddeland I, Heinke J, Biemans H, Eisner S, Flörke M, Hanasaki N, Konzmann M, Ludwig F, Masaki Y, Schewe J, Stacke T, Tessler ZD, Wada Y, Wisser D (2014) Global water resources affected by human interventions and climate change. Proc Natl Acad Sci U S A 111(9):3251–3256

    Article  CAS  Google Scholar 

  19. McCauley LA, Anteau MJ, Van der Burg MP, Wiltermuth MT (2015) Land use and wetland drainage affect water levels and dynamics of remaining wetlands. Ecosphere 6(6), article 92, 22 pp

    Article  Google Scholar 

  20. Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol, Evol Syst 32:333–365

    Article  Google Scholar 

  21. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  CAS  Google Scholar 

  22. Everard M, Powell A (2002) Rivers as living systems. Aquat Conserv: Mar Freshw Ecosyst 12:329–337

    Article  Google Scholar 

  23. Němec J, Hladný J (eds)(2006) Water in the Czech Republic [in Czech: Voda v České republice]. Min. zemědělství ČR-Consult, Praha, 255 pp

    Google Scholar 

  24. Pavelková, R Frajer J, Netopil P (eds) (2014) Historical ponds of the Czech Republic—comparison of a current state with the status in second half of 19 century [in Czech with English summary]. Výzkumný ústav vodohospodářský TGM, v.v.i, Praha, 167 pp

    Google Scholar 

  25. Taranza J (2017) Effect of systematic agricultural drainage on groundwaters from the hydrogeologist’s point of view [in Czech], pp 75–85. In: Proceedings from Conference “Landscape Engineering”, October 10th 2018, Ministry of Agriculture, Prague

    Google Scholar 

  26. Pokorný J (2017) Do not be surprised that it’s drought [in Czech]. VTEI 4:59

    Google Scholar 

  27. Šantrůčková H, Malý S, Cienciala E (2014) Soil organic matter and water retention capacity of soils [in Czech with English summary], pp 41–48. In: Fanta J, Petřík P (eds) Floods and droughts: landscape as the basis for a solution. Proceedings from seminars of the Commission for environment of the Czech Academy of Sciences held in October 8th 2013 and June 5th 2014, Institute of Botany the Czech Academy of the Science

    Google Scholar 

  28. MacDonald AM, Bonsor HC, Dochartaigh BEO, Taylor RG (2012) Quantitative maps of groundwater resources in Africa. Environ Res Lett 7:024009 (7 pp)

    Article  Google Scholar 

  29. Everard M (2004) Investing in sustainable catchments. Sci Total Environ 324:1–24

    Article  CAS  Google Scholar 

  30. Newson M (1994) Hydrology and the river environment. Oxford University Press, Oxford, 221 pp

    Google Scholar 

  31. Calder IR (1999) The blue revolution: land use and integrated water resources management. Earthscan Publications Ltd, London, 192 pp

    Google Scholar 

  32. Powell A (2000) Multiple benefits of river restoration (Water in the Celtic World: Managing Resources for the 21st Century. Second Inter-Celtic colloquium). British Hydrological Society, Occasional Paper No. 11, London

    Google Scholar 

  33. Gardiner JL, Perala-Gardiner NC (2000) Conservation, ecosystem use and sustainability. In: Boon PJ, Davies BR, Petts GE (eds) Global perspectives on river conservation: science, policy and practice. Wiley, Chichester, pp 337–351

    Google Scholar 

  34. Boon PJ, Davies BR, Petts GE (eds) (2000) Global perspectives on river conservation: science, policy and practice. Wiley, Chichester, 548 pp

    Google Scholar 

  35. Mance G, Raven PJ, Bramley ME (2002) Integrated river basin management in England and Wales: a policy perspective. Aquat Conserv: Mar Freshw Ecosyst 12:339–346

    Article  Google Scholar 

  36. Pithart D (2014) Involvement of aquatic and wetland ecosystems in addressing current challenges of water management [in Czech with English summary], pp 26–35. In: Fanta J, Petřík P (eds) Floods and droughts: landscape as the basis for a solution. Proceedings from seminars of the Commission for environment of the Czech Academy of Sciences held in October 8th 2013 and June 5th 2014, Institute of Botany the Czech Academy of the Science

    Google Scholar 

  37. Allan JD, Erickson DL, Fay J (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshw Biol 37:149–161

    Article  Google Scholar 

  38. Strayer DL, Beighley RE, Thompson LC, Brooks S, Nilsson C et al (2003) Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems 6:407–423

    Article  Google Scholar 

  39. Townsend CR, Doledec S, Norris R, Peacock K, Arbuckle C (2003) The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshw Biol 48:768–785

    Article  Google Scholar 

  40. Meyer JL, Sale MJ, Mulholland PJ, Poff NL (1999) Impacts of climate changes on aquatic ecosystem functioning and health. J Am Water Resour Assoc (JAWRA) 35(6):1373–1386

    Article  Google Scholar 

  41. Scott MC, Helfman GS (2001) Native invasions, homogenization, and the mismeasure of integrity of fish assemblages. Fisheries 26:6–15

    Article  Google Scholar 

  42. Nilsson C, Berggren K (2000) Alterations of riparian ecosystems caused by river regulation. Bioscience 50:783–792

    Article  Google Scholar 

  43. Ward JV (1998) Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biol Cons 83:269–278

    Article  Google Scholar 

  44. Gibert J, Dole-Olivier M-J, Marmonier P, Vervier P (1990) Surface water-groundwater ecotones. In: Naiman RJ, Decamps H (eds) Ecology and management of aquatic-terrestrial ecotones. Parthenon, Carnforth, pp 199–225

    Google Scholar 

  45. Robinson CT, Tockner K, Ward JV (2002) The fauna of dynamic riverine landscapes. Freshw Biol 47:661–677

    Article  Google Scholar 

  46. Schlosser IJ (1991) Fish ecology: a landscape perspective. Bioscience 41(10):704–712

    Article  Google Scholar 

  47. Fausch KD, Torgersen CE, Baxter CV, Li HW (2002) Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. Bioscience 52:483–498

    Article  Google Scholar 

  48. Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol, Evol Syst 35:257–284

    Article  Google Scholar 

  49. Hynes HBN (1975) The stream and its valley. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 19:1–15

    Google Scholar 

  50. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  51. Stanford JA, Ward JV, Liss WJ, Frissell CA, Williams RN, Lichatowich JA, Coutant CC (1996) A general protocol for restoration of regulated rivers. Regul Rivers: Res Manag 12:391–413

    Article  Google Scholar 

  52. Ward JV, Malard F, Tockner K (2002) Landscape ecology: a framework for integrating pattern and process in river corridors. Landscape Ecol 17:35–42

    Article  Google Scholar 

  53. Leuven RSEW, Poudevigne I (2002) Riverine landscape an dynamics and ecological risk assessment. Freshw Biol 47:845–865

    Article  Google Scholar 

  54. Wiens JA (2002) Riverine landscapes: taking landscape ecology into the water. Freshw Biol 47:501–515

    Article  Google Scholar 

  55. Winter TC (2001) The concept of hydrologic landscape. J Am Water Resour Assoc (JAWRA 37(2):335–349

    Article  Google Scholar 

  56. Ward JV (1997) An expansive perspective of riverine landscapes: pattern and process across scales. GAIA 6:52–60

    Article  Google Scholar 

  57. Ward JV, Robinson CT, Tockner K (2002) Applicability of ecological theory to riverine ecosystems. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 28:443–450

    Google Scholar 

  58. Jungwirth M, Muhar S, Schmutz S (2002) Re-establishing and assessing ecological integrity in riverine landscapes. Freshw Biol 47:867–887

    Article  Google Scholar 

  59. Ward JV, Tockner K (2001) Biodiversity: towards a unifying theme for river ecology. Freshw Biol 46:807–819

    Article  Google Scholar 

  60. Ward JV (1989) The four-dimensional nature of lotic ecosystems. J N Amn Bentohological Soc 8(1):2–8

    Article  Google Scholar 

  61. Ward JV, Stanford JA (1995) Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regul Rivers: Res Manag 11:105–119

    Article  Google Scholar 

  62. Hynes HBN (1983) Groundwater and stream ecology. Hydrobiologia 100:93–99

    Article  Google Scholar 

  63. Jones Jr, JB, Mulholland PJ (eds) (2000) Streams and ground waters. Academic Press, San Diego, 425 pp

    Google Scholar 

  64. Jones JB Jr, Holmes RM (1996) Surface-subsurface interactions in stream ecosystems. Trends Ecol Evol 11(6):239–242

    Article  Google Scholar 

  65. Fisher SG, Heffernan JB, Sponseller RA, Welter JR (1997) Functional ecomorphology: feedbacks between form and function in fluvial landscape ecosystems. Geomorphology 89:84–96

    Article  Google Scholar 

  66. Malard F, Tockner K, Dole-Olivier M-J, Ward JV (2002) A landscape perspective of surface-subsurface hydrological exchanges in river corridors. Freshw Biol 47:621–640

    Article  Google Scholar 

  67. Winter TC (2000) The vulnerability of wetlands to climate change: a hydrologic landscape perspective. J Am Water Resour Assoc (JAWRA 36(2):305–311

    Article  Google Scholar 

  68. Costanza R, d’Arge R, de Groot RS, Farber S, Grasso M, Hannon B, Limburg KL, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  69. Sun R, Chen A, Chen L, Lü Y (2012) Cooling effects of wetlands in an urban region: the case of Beijing. Ecol Ind 20:57–64

    Article  Google Scholar 

  70. Mitsch WJ, Mander U (2018) Wetlands and carbon revisited. Ecol Eng 114:1–6

    Article  Google Scholar 

  71. Villa JA, Bernal B (2018) Carbon sequestration in wetlands, from science to practice: an overview of the biogeochemical process, measurement methods, and policy framework. Ecol Eng 114:115–128

    Article  Google Scholar 

  72. Pokorný J (2001) Dissipation of solar energy in landscape-controlled by management of water and vegetation. Renewable Energy 24:641–645

    Article  Google Scholar 

  73. Pokorný J, Květ J, Rejšková A, Brom J (2010) Wetlands as energy-dissipating systems. J Ind Microbiol Biotechnol 37:1299–1305

    Article  Google Scholar 

  74. Pokorný J, Huryna H (2018) Weather, climate and wetlands: understanding the terms and definitions, pp 1–5. In: Finlayson CM, Everard M, Irvine K, McInnes R, Middleton B, van Dam A, Davidson NC (eds) The Wetland book—I: structure and function, management, and methods. Springer, Dordrecht, The Netherlands, 1983 pp

    Google Scholar 

  75. Huryna H, Brom J, Pokorný J (2014) The importance of wetlands in the energy balance of an agricultural landscape. Wetl Ecol Manag 22:363–381

    Article  Google Scholar 

  76. Pokorný J, Hesslerová P, Huryna H, Harper D (2017) Indirect and direct thermodynamic effects of wetland ecosystems on the climate—part 2 [in Czech with English abstract]. Vodní hospodářství 7:21–27

    Google Scholar 

  77. Pokorný J, Hesslerová P, Huryna H, Harper D (2017) Indirect and direct thermodynamic effects of wetland ecosystems on the climate—Part 1 [in Czech]. Vodní hospodářství 7:2–5

    Google Scholar 

  78. Kravčík M, Pokorný J, Kohutiar J, Kovác M, Tóth E (2007) Water for the recovery of the climate—a new water paradigm. Krupa Print, Žilina, 94 pp

    Google Scholar 

  79. Water retention landscape (2018) Tamera. Retrieved from https://www.tamera.org/water-retention-landscape/. Accessed on 20 Aug 2018

  80. Brázdil R, Dobrovolný P, Trnka M, Kotyza O, Řezníčková L, Valášek H, Zahradníček P, Štěpánek P (2013) Droughts in the Czech Lands, 1090–2012 AD. Clim Past 9(4):1985–2002

    Article  Google Scholar 

  81. Improved water retention in agricultural areas (2015) European Climate Adaptation Platform. Retrieved from https://climate-adapt.eea.europa.eu/metadata/adaptation-options/improved-water-retention-in-agricultural-areas. Accessed on 20 Aug 2018

  82. Tague C, Valentine S, Kotchen M (2008) Effect of geomorphic channel restoration on streamflow and groundwater in a snowmelt-dominated watershed. Water Resour Res 44(10):W10415. https://doi.org/10.1029/2007wr006418

  83. Nash CS, Selker JS, Grant GE, Lewis SL, Noël P (2018) A physical framework for evaluating net effects of wet meadow restoration on late-summer streamflow. Ecohydrology 11(5):e1953. https://doi.org/10.1002/eco.1953

    Article  Google Scholar 

  84. Ligon FK, Dietrich WE, Trush WJ (1995) Downstream ecological effects of dams. BioScience-Ecol Large Rivers 45(3):183–192

    Google Scholar 

  85. Pielke RA Jr (1999) Nine fallacies of floods. Clim Change 42:413–438

    Article  Google Scholar 

  86. Fekete BM, Bogárdi JJ (2015) Role of engineering in sustainable water management. Earth Perspect 2:2. https://doi.org/10.1186/s40322-014-0027-7

  87. Leuven RSEW, Smits AJM, Nienhuis PH (2000) Introduction. In: Smits AJM, Nienhuis PH, Leuven RSEW (eds) New approaches to river management. Backhuys, Leiden, pp 329–347

    Google Scholar 

  88. Petts GE, Nestler J, Kennedy R (2006) Advancing science for water resources management. Hydrobiologia 565:277–288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rulík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rulík, M., White, S.M. (2020). The Role of Water in the Landscape. In: Zelenakova, M., Fialová, J., Negm, A. (eds) Assessment and Protection of Water Resources in the Czech Republic. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-18363-9_4

Download citation

Publish with us

Policies and ethics